# coding=utf-8 # Copyright 2024 HuggingFace Inc and The InstantX Team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import unittest import numpy as np import torch from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, T5EncoderModel from diffusers import ( AutoencoderKL, FlowMatchEulerDiscreteScheduler, SD3Transformer2DModel, StableDiffusion3ControlNetPipeline, ) from diffusers.models import SD3ControlNetModel, SD3MultiControlNetModel from diffusers.utils import load_image from diffusers.utils.testing_utils import ( enable_full_determinism, require_torch_gpu, slow, torch_device, ) from diffusers.utils.torch_utils import randn_tensor from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class StableDiffusion3ControlNetPipelineFastTests(unittest.TestCase, PipelineTesterMixin): pipeline_class = StableDiffusion3ControlNetPipeline params = frozenset( [ "prompt", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", ] ) batch_params = frozenset(["prompt", "negative_prompt"]) def get_dummy_components(self): torch.manual_seed(0) transformer = SD3Transformer2DModel( sample_size=32, patch_size=1, in_channels=8, num_layers=4, attention_head_dim=8, num_attention_heads=4, joint_attention_dim=32, caption_projection_dim=32, pooled_projection_dim=64, out_channels=8, ) torch.manual_seed(0) controlnet = SD3ControlNetModel( sample_size=32, patch_size=1, in_channels=8, num_layers=1, attention_head_dim=8, num_attention_heads=4, joint_attention_dim=32, caption_projection_dim=32, pooled_projection_dim=64, out_channels=8, ) clip_text_encoder_config = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, hidden_act="gelu", projection_dim=32, ) torch.manual_seed(0) text_encoder = CLIPTextModelWithProjection(clip_text_encoder_config) torch.manual_seed(0) text_encoder_2 = CLIPTextModelWithProjection(clip_text_encoder_config) torch.manual_seed(0) text_encoder_3 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5") tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") tokenizer_3 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5") torch.manual_seed(0) vae = AutoencoderKL( sample_size=32, in_channels=3, out_channels=3, block_out_channels=(4,), layers_per_block=1, latent_channels=8, norm_num_groups=1, use_quant_conv=False, use_post_quant_conv=False, shift_factor=0.0609, scaling_factor=1.5035, ) scheduler = FlowMatchEulerDiscreteScheduler() return { "scheduler": scheduler, "text_encoder": text_encoder, "text_encoder_2": text_encoder_2, "text_encoder_3": text_encoder_3, "tokenizer": tokenizer, "tokenizer_2": tokenizer_2, "tokenizer_3": tokenizer_3, "transformer": transformer, "vae": vae, "controlnet": controlnet, } def get_dummy_inputs(self, device, seed=0): if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device="cpu").manual_seed(seed) control_image = randn_tensor( (1, 3, 32, 32), generator=generator, device=torch.device(device), dtype=torch.float16, ) controlnet_conditioning_scale = 0.5 inputs = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 5.0, "output_type": "np", "control_image": control_image, "controlnet_conditioning_scale": controlnet_conditioning_scale, } return inputs def test_controlnet_sd3(self): components = self.get_dummy_components() sd_pipe = StableDiffusion3ControlNetPipeline(**components) sd_pipe = sd_pipe.to(torch_device, dtype=torch.float16) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(torch_device) output = sd_pipe(**inputs) image = output.images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) expected_slice = np.array( [0.5761719, 0.71777344, 0.59228516, 0.578125, 0.6020508, 0.39453125, 0.46728516, 0.51708984, 0.58984375] ) assert ( np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 ), f"Expected: {expected_slice}, got: {image_slice.flatten()}" @slow @require_torch_gpu class StableDiffusion3ControlNetPipelineSlowTests(unittest.TestCase): pipeline_class = StableDiffusion3ControlNetPipeline def setUp(self): super().setUp() gc.collect() torch.cuda.empty_cache() def tearDown(self): super().tearDown() gc.collect() torch.cuda.empty_cache() def test_canny(self): controlnet = SD3ControlNetModel.from_pretrained("InstantX/SD3-Controlnet-Canny", torch_dtype=torch.float16) pipe = StableDiffusion3ControlNetPipeline.from_pretrained( "stabilityai/stable-diffusion-3-medium-diffusers", controlnet=controlnet, torch_dtype=torch.float16 ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=None) generator = torch.Generator(device="cpu").manual_seed(0) prompt = "Anime style illustration of a girl wearing a suit. A moon in sky. In the background we see a big rain approaching. text 'InstantX' on image" n_prompt = "NSFW, nude, naked, porn, ugly" control_image = load_image("https://huggingface.co/InstantX/SD3-Controlnet-Canny/resolve/main/canny.jpg") output = pipe( prompt, negative_prompt=n_prompt, control_image=control_image, controlnet_conditioning_scale=0.5, guidance_scale=5.0, num_inference_steps=2, output_type="np", generator=generator, ) image = output.images[0] assert image.shape == (1024, 1024, 3) original_image = image[-3:, -3:, -1].flatten() expected_image = np.array( [0.20947266, 0.1574707, 0.19897461, 0.15063477, 0.1418457, 0.17285156, 0.14160156, 0.13989258, 0.30810547] ) assert np.abs(original_image.flatten() - expected_image).max() < 1e-2 def test_pose(self): controlnet = SD3ControlNetModel.from_pretrained("InstantX/SD3-Controlnet-Pose", torch_dtype=torch.float16) pipe = StableDiffusion3ControlNetPipeline.from_pretrained( "stabilityai/stable-diffusion-3-medium-diffusers", controlnet=controlnet, torch_dtype=torch.float16 ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=None) generator = torch.Generator(device="cpu").manual_seed(0) prompt = 'Anime style illustration of a girl wearing a suit. A moon in sky. In the background we see a big rain approaching. text "InstantX" on image' n_prompt = "NSFW, nude, naked, porn, ugly" control_image = load_image("https://huggingface.co/InstantX/SD3-Controlnet-Pose/resolve/main/pose.jpg") output = pipe( prompt, negative_prompt=n_prompt, control_image=control_image, controlnet_conditioning_scale=0.5, guidance_scale=5.0, num_inference_steps=2, output_type="np", generator=generator, ) image = output.images[0] assert image.shape == (1024, 1024, 3) original_image = image[-3:, -3:, -1].flatten() expected_image = np.array( [0.8671875, 0.86621094, 0.91015625, 0.8491211, 0.87890625, 0.9140625, 0.8300781, 0.8334961, 0.8623047] ) assert np.abs(original_image.flatten() - expected_image).max() < 1e-2 def test_tile(self): controlnet = SD3ControlNetModel.from_pretrained("InstantX//SD3-Controlnet-Tile", torch_dtype=torch.float16) pipe = StableDiffusion3ControlNetPipeline.from_pretrained( "stabilityai/stable-diffusion-3-medium-diffusers", controlnet=controlnet, torch_dtype=torch.float16 ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=None) generator = torch.Generator(device="cpu").manual_seed(0) prompt = 'Anime style illustration of a girl wearing a suit. A moon in sky. In the background we see a big rain approaching. text "InstantX" on image' n_prompt = "NSFW, nude, naked, porn, ugly" control_image = load_image("https://huggingface.co/InstantX/SD3-Controlnet-Tile/resolve/main/tile.jpg") output = pipe( prompt, negative_prompt=n_prompt, control_image=control_image, controlnet_conditioning_scale=0.5, guidance_scale=5.0, num_inference_steps=2, output_type="np", generator=generator, ) image = output.images[0] assert image.shape == (1024, 1024, 3) original_image = image[-3:, -3:, -1].flatten() expected_image = np.array( [0.6982422, 0.7011719, 0.65771484, 0.6904297, 0.7416992, 0.6904297, 0.6977539, 0.7080078, 0.6386719] ) assert np.abs(original_image.flatten() - expected_image).max() < 1e-2 def test_multi_controlnet(self): controlnet = SD3ControlNetModel.from_pretrained("InstantX/SD3-Controlnet-Canny", torch_dtype=torch.float16) controlnet = SD3MultiControlNetModel([controlnet, controlnet]) pipe = StableDiffusion3ControlNetPipeline.from_pretrained( "stabilityai/stable-diffusion-3-medium-diffusers", controlnet=controlnet, torch_dtype=torch.float16 ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=None) generator = torch.Generator(device="cpu").manual_seed(0) prompt = "Anime style illustration of a girl wearing a suit. A moon in sky. In the background we see a big rain approaching. text 'InstantX' on image" n_prompt = "NSFW, nude, naked, porn, ugly" control_image = load_image("https://huggingface.co/InstantX/SD3-Controlnet-Canny/resolve/main/canny.jpg") output = pipe( prompt, negative_prompt=n_prompt, control_image=[control_image, control_image], controlnet_conditioning_scale=[0.25, 0.25], guidance_scale=5.0, num_inference_steps=2, output_type="np", generator=generator, ) image = output.images[0] assert image.shape == (1024, 1024, 3) original_image = image[-3:, -3:, -1].flatten() expected_image = np.array( [0.7451172, 0.7416992, 0.7158203, 0.7792969, 0.7607422, 0.7089844, 0.6855469, 0.71777344, 0.7314453] ) assert np.abs(original_image.flatten() - expected_image).max() < 1e-2