# coding=utf-8 # Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class IFInpaintingSuperResolutionPipelineFastTests(PipelineTesterMixin, IFPipelineTesterMixin, unittest.TestCase): pipeline_class = IFInpaintingSuperResolutionPipeline params = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"width", "height"} batch_params = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({"original_image"}) required_optional_params = PipelineTesterMixin.required_optional_params - {"latents"} def get_dummy_components(self): return self._get_superresolution_dummy_components() def get_dummy_inputs(self, device, seed=0): if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) image = floats_tensor((1, 3, 16, 16), rng=random.Random(seed)).to(device) original_image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device) mask_image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device) inputs = { "prompt": "A painting of a squirrel eating a burger", "image": image, "original_image": original_image, "mask_image": mask_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available(), reason="XFormers attention is only available with CUDA and `xformers` installed", ) def test_xformers_attention_forwardGenerator_pass(self): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3) def test_save_load_optional_components(self): self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda", reason="float16 requires CUDA") def test_save_load_float16(self): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_float16(expected_max_diff=1e-1) def test_attention_slicing_forward_pass(self): self._test_attention_slicing_forward_pass(expected_max_diff=1e-2) def test_save_load_local(self): self._test_save_load_local() def test_inference_batch_single_identical(self): self._test_inference_batch_single_identical( expected_max_diff=1e-2, ) @slow @require_torch_gpu class IFInpaintingSuperResolutionPipelineSlowTests(unittest.TestCase): def setUp(self): # clean up the VRAM before each test super().setUp() gc.collect() torch.cuda.empty_cache() def tearDown(self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def test_if_inpainting_superresolution(self): pipe = IFInpaintingSuperResolutionPipeline.from_pretrained( "DeepFloyd/IF-II-L-v1.0", variant="fp16", torch_dtype=torch.float16 ) pipe.unet.set_attn_processor(AttnAddedKVProcessor()) pipe.enable_model_cpu_offload() # Super resolution test torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() generator = torch.Generator(device="cpu").manual_seed(0) image = floats_tensor((1, 3, 64, 64), rng=random.Random(0)).to(torch_device) original_image = floats_tensor((1, 3, 256, 256), rng=random.Random(0)).to(torch_device) mask_image = floats_tensor((1, 3, 256, 256), rng=random.Random(1)).to(torch_device) output = pipe( prompt="anime turtle", image=image, original_image=original_image, mask_image=mask_image, generator=generator, num_inference_steps=2, output_type="np", ) image = output.images[0] assert image.shape == (256, 256, 3) mem_bytes = torch.cuda.max_memory_allocated() assert mem_bytes < 12 * 10**9 expected_image = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy" ) assert_mean_pixel_difference(image, expected_image) pipe.remove_all_hooks()