# coding=utf-8 # Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNet2DConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, nightly, require_torch_gpu, torch_device, ) from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class Dummies: @property def text_embedder_hidden_size(self): return 32 @property def time_input_dim(self): return 32 @property def block_out_channels_0(self): return self.time_input_dim @property def time_embed_dim(self): return self.time_input_dim * 4 @property def cross_attention_dim(self): return 32 @property def dummy_tokenizer(self): tokenizer = XLMRobertaTokenizerFast.from_pretrained("YiYiXu/tiny-random-mclip-base") return tokenizer @property def dummy_text_encoder(self): torch.manual_seed(0) config = MCLIPConfig( numDims=self.cross_attention_dim, transformerDimensions=self.text_embedder_hidden_size, hidden_size=self.text_embedder_hidden_size, intermediate_size=37, num_attention_heads=4, num_hidden_layers=5, vocab_size=1005, ) text_encoder = MultilingualCLIP(config) text_encoder = text_encoder.eval() return text_encoder @property def dummy_unet(self): torch.manual_seed(0) model_kwargs = { "in_channels": 9, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "text_image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_0, self.block_out_channels_0 * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "text_image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } model = UNet2DConditionModel(**model_kwargs) return model @property def dummy_movq_kwargs(self): return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def dummy_movq(self): torch.manual_seed(0) model = VQModel(**self.dummy_movq_kwargs) return model def get_dummy_components(self): text_encoder = self.dummy_text_encoder tokenizer = self.dummy_tokenizer unet = self.dummy_unet movq = self.dummy_movq scheduler = DDIMScheduler( num_train_timesteps=1000, beta_schedule="linear", beta_start=0.00085, beta_end=0.012, clip_sample=False, set_alpha_to_one=False, steps_offset=1, prediction_type="epsilon", thresholding=False, ) components = { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "movq": movq, } return components def get_dummy_inputs(self, device, seed=0): image_embeds = floats_tensor((1, self.cross_attention_dim), rng=random.Random(seed)).to(device) negative_image_embeds = floats_tensor((1, self.cross_attention_dim), rng=random.Random(seed + 1)).to(device) # create init_image image = floats_tensor((1, 3, 64, 64), rng=random.Random(seed)).to(device) image = image.cpu().permute(0, 2, 3, 1)[0] init_image = Image.fromarray(np.uint8(image)).convert("RGB").resize((256, 256)) # create mask mask = np.zeros((64, 64), dtype=np.float32) mask[:32, :32] = 1 if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) inputs = { "prompt": "horse", "image": init_image, "mask_image": mask, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 64, "width": 64, "num_inference_steps": 2, "guidance_scale": 4.0, "output_type": "np", } return inputs class KandinskyInpaintPipelineFastTests(PipelineTesterMixin, unittest.TestCase): pipeline_class = KandinskyInpaintPipeline params = ["prompt", "image_embeds", "negative_image_embeds", "image", "mask_image"] batch_params = [ "prompt", "negative_prompt", "image_embeds", "negative_image_embeds", "image", "mask_image", ] required_optional_params = [ "generator", "height", "width", "latents", "guidance_scale", "negative_prompt", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] test_xformers_attention = False def get_dummy_components(self): dummies = Dummies() return dummies.get_dummy_components() def get_dummy_inputs(self, device, seed=0): dummies = Dummies() return dummies.get_dummy_inputs(device=device, seed=seed) def test_kandinsky_inpaint(self): device = "cpu" components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe = pipe.to(device) pipe.set_progress_bar_config(disable=None) output = pipe(**self.get_dummy_inputs(device)) image = output.images image_from_tuple = pipe( **self.get_dummy_inputs(device), return_dict=False, )[0] image_slice = image[0, -3:, -3:, -1] image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) expected_slice = np.array([0.8222, 0.8896, 0.4373, 0.8088, 0.4905, 0.2609, 0.6816, 0.4291, 0.5129]) assert ( np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" def test_inference_batch_single_identical(self): super().test_inference_batch_single_identical(expected_max_diff=3e-3) @require_torch_gpu def test_offloads(self): pipes = [] components = self.get_dummy_components() sd_pipe = self.pipeline_class(**components).to(torch_device) pipes.append(sd_pipe) components = self.get_dummy_components() sd_pipe = self.pipeline_class(**components) sd_pipe.enable_model_cpu_offload() pipes.append(sd_pipe) components = self.get_dummy_components() sd_pipe = self.pipeline_class(**components) sd_pipe.enable_sequential_cpu_offload() pipes.append(sd_pipe) image_slices = [] for pipe in pipes: inputs = self.get_dummy_inputs(torch_device) image = pipe(**inputs).images image_slices.append(image[0, -3:, -3:, -1].flatten()) assert np.abs(image_slices[0] - image_slices[1]).max() < 1e-3 assert np.abs(image_slices[0] - image_slices[2]).max() < 1e-3 def test_float16_inference(self): super().test_float16_inference(expected_max_diff=5e-1) @nightly @require_torch_gpu class KandinskyInpaintPipelineIntegrationTests(unittest.TestCase): def setUp(self): # clean up the VRAM before each test super().setUp() gc.collect() torch.cuda.empty_cache() def tearDown(self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def test_kandinsky_inpaint(self): expected_image = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy" ) init_image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) mask = np.zeros((768, 768), dtype=np.float32) mask[:250, 250:-250] = 1 prompt = "a hat" pipe_prior = KandinskyPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1-prior", torch_dtype=torch.float16 ) pipe_prior.to(torch_device) pipeline = KandinskyInpaintPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1-inpaint", torch_dtype=torch.float16 ) pipeline = pipeline.to(torch_device) pipeline.set_progress_bar_config(disable=None) generator = torch.Generator(device="cpu").manual_seed(0) image_emb, zero_image_emb = pipe_prior( prompt, generator=generator, num_inference_steps=5, negative_prompt="", ).to_tuple() output = pipeline( prompt, image=init_image, mask_image=mask, image_embeds=image_emb, negative_image_embeds=zero_image_emb, generator=generator, num_inference_steps=100, height=768, width=768, output_type="np", ) image = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(image, expected_image)