# Copyright 2024 Marigold authors, PRS ETH Zurich. All rights reserved. # Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # -------------------------------------------------------------------------- # More information and citation instructions are available on the # Marigold project website: https://marigoldmonodepth.github.io # -------------------------------------------------------------------------- import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, AutoencoderTiny, LCMScheduler, MarigoldNormalsPipeline, UNet2DConditionModel, ) from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, require_torch_gpu, slow, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class MarigoldNormalsPipelineFastTests(PipelineTesterMixin, unittest.TestCase): pipeline_class = MarigoldNormalsPipeline params = frozenset(["image"]) batch_params = frozenset(["image"]) image_params = frozenset(["image"]) image_latents_params = frozenset(["latents"]) callback_cfg_params = frozenset([]) test_xformers_attention = False required_optional_params = frozenset( [ "num_inference_steps", "generator", "output_type", ] ) def get_dummy_components(self, time_cond_proj_dim=None): torch.manual_seed(0) unet = UNet2DConditionModel( block_out_channels=(32, 64), layers_per_block=2, time_cond_proj_dim=time_cond_proj_dim, sample_size=32, in_channels=8, out_channels=4, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), cross_attention_dim=32, ) torch.manual_seed(0) scheduler = LCMScheduler( beta_start=0.00085, beta_end=0.012, prediction_type="v_prediction", set_alpha_to_one=False, steps_offset=1, beta_schedule="scaled_linear", clip_sample=False, thresholding=False, ) torch.manual_seed(0) vae = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], latent_channels=4, ) torch.manual_seed(0) text_encoder_config = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, ) text_encoder = CLIPTextModel(text_encoder_config) tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") components = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "prediction_type": "normals", "use_full_z_range": True, } return components def get_dummy_tiny_autoencoder(self): return AutoencoderTiny(in_channels=3, out_channels=3, latent_channels=4) def get_dummy_inputs(self, device, seed=0): image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device) image = image / 2 + 0.5 if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) inputs = { "image": image, "num_inference_steps": 1, "processing_resolution": 0, "generator": generator, "output_type": "np", } return inputs def _test_marigold_normals( self, generator_seed: int = 0, expected_slice: np.ndarray = None, atol: float = 1e-4, **pipe_kwargs, ): device = "cpu" components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe.to(device) pipe.set_progress_bar_config(disable=None) pipe_inputs = self.get_dummy_inputs(device, seed=generator_seed) pipe_inputs.update(**pipe_kwargs) prediction = pipe(**pipe_inputs).prediction prediction_slice = prediction[0, -3:, -3:, -1].flatten() if pipe_inputs.get("match_input_resolution", True): self.assertEqual(prediction.shape, (1, 32, 32, 3), "Unexpected output resolution") else: self.assertTrue(prediction.shape[0] == 1 and prediction.shape[3] == 3, "Unexpected output dimensions") self.assertEqual( max(prediction.shape[1:3]), pipe_inputs.get("processing_resolution", 768), "Unexpected output resolution", ) self.assertTrue(np.allclose(prediction_slice, expected_slice, atol=atol)) def test_marigold_depth_dummy_defaults(self): self._test_marigold_normals( expected_slice=np.array([0.0967, 0.5234, 0.1448, -0.3155, -0.2550, -0.5578, 0.6854, 0.5657, -0.1263]), ) def test_marigold_depth_dummy_G0_S1_P32_E1_B1_M1(self): self._test_marigold_normals( generator_seed=0, expected_slice=np.array([0.0967, 0.5234, 0.1448, -0.3155, -0.2550, -0.5578, 0.6854, 0.5657, -0.1263]), num_inference_steps=1, processing_resolution=32, ensemble_size=1, batch_size=1, match_input_resolution=True, ) def test_marigold_depth_dummy_G0_S1_P16_E1_B1_M1(self): self._test_marigold_normals( generator_seed=0, expected_slice=np.array([-0.4128, -0.5918, -0.6540, 0.2446, -0.2687, -0.4607, 0.2935, -0.0483, -0.2086]), num_inference_steps=1, processing_resolution=16, ensemble_size=1, batch_size=1, match_input_resolution=True, ) def test_marigold_depth_dummy_G2024_S1_P32_E1_B1_M1(self): self._test_marigold_normals( generator_seed=2024, expected_slice=np.array([0.5731, -0.7631, -0.0199, 0.1609, -0.4628, -0.7044, 0.5761, -0.3471, -0.4498]), num_inference_steps=1, processing_resolution=32, ensemble_size=1, batch_size=1, match_input_resolution=True, ) def test_marigold_depth_dummy_G0_S2_P32_E1_B1_M1(self): self._test_marigold_normals( generator_seed=0, expected_slice=np.array([0.1017, -0.6823, -0.2533, 0.1988, 0.3389, 0.8478, 0.7757, 0.5220, 0.8668]), num_inference_steps=2, processing_resolution=32, ensemble_size=1, batch_size=1, match_input_resolution=True, ) def test_marigold_depth_dummy_G0_S1_P64_E1_B1_M1(self): self._test_marigold_normals( generator_seed=0, expected_slice=np.array([-0.2391, 0.7969, 0.6224, 0.0698, 0.5669, -0.2167, -0.1362, -0.8945, -0.5501]), num_inference_steps=1, processing_resolution=64, ensemble_size=1, batch_size=1, match_input_resolution=True, ) def test_marigold_depth_dummy_G0_S1_P32_E3_B1_M1(self): self._test_marigold_normals( generator_seed=0, expected_slice=np.array([0.3826, -0.9634, -0.3835, 0.3514, 0.0691, -0.6182, 0.8709, 0.1590, -0.2181]), num_inference_steps=1, processing_resolution=32, ensemble_size=3, ensembling_kwargs={"reduction": "mean"}, batch_size=1, match_input_resolution=True, ) def test_marigold_depth_dummy_G0_S1_P32_E4_B2_M1(self): self._test_marigold_normals( generator_seed=0, expected_slice=np.array([0.2500, -0.3928, -0.2415, 0.1133, 0.2357, -0.4223, 0.9967, 0.4859, -0.1282]), num_inference_steps=1, processing_resolution=32, ensemble_size=4, ensembling_kwargs={"reduction": "mean"}, batch_size=2, match_input_resolution=True, ) def test_marigold_depth_dummy_G0_S1_P16_E1_B1_M0(self): self._test_marigold_normals( generator_seed=0, expected_slice=np.array([0.9588, 0.3326, -0.0825, -0.0994, -0.3534, -0.4302, 0.3562, 0.4421, -0.2086]), num_inference_steps=1, processing_resolution=16, ensemble_size=1, batch_size=1, match_input_resolution=False, ) def test_marigold_depth_dummy_no_num_inference_steps(self): with self.assertRaises(ValueError) as e: self._test_marigold_normals( num_inference_steps=None, expected_slice=np.array([0.0]), ) self.assertIn("num_inference_steps", str(e)) def test_marigold_depth_dummy_no_processing_resolution(self): with self.assertRaises(ValueError) as e: self._test_marigold_normals( processing_resolution=None, expected_slice=np.array([0.0]), ) self.assertIn("processing_resolution", str(e)) @slow @require_torch_gpu class MarigoldNormalsPipelineIntegrationTests(unittest.TestCase): def setUp(self): super().setUp() gc.collect() torch.cuda.empty_cache() def tearDown(self): super().tearDown() gc.collect() torch.cuda.empty_cache() def _test_marigold_normals( self, is_fp16: bool = True, device: str = "cuda", generator_seed: int = 0, expected_slice: np.ndarray = None, model_id: str = "prs-eth/marigold-normals-lcm-v0-1", image_url: str = "https://marigoldmonodepth.github.io/images/einstein.jpg", atol: float = 1e-4, **pipe_kwargs, ): from_pretrained_kwargs = {} if is_fp16: from_pretrained_kwargs["variant"] = "fp16" from_pretrained_kwargs["torch_dtype"] = torch.float16 pipe = MarigoldNormalsPipeline.from_pretrained(model_id, **from_pretrained_kwargs) if device == "cuda": pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=None) generator = torch.Generator(device=device).manual_seed(generator_seed) image = load_image(image_url) width, height = image.size prediction = pipe(image, generator=generator, **pipe_kwargs).prediction prediction_slice = prediction[0, -3:, -3:, -1].flatten() if pipe_kwargs.get("match_input_resolution", True): self.assertEqual(prediction.shape, (1, height, width, 3), "Unexpected output resolution") else: self.assertTrue(prediction.shape[0] == 1 and prediction.shape[3] == 3, "Unexpected output dimensions") self.assertEqual( max(prediction.shape[1:3]), pipe_kwargs.get("processing_resolution", 768), "Unexpected output resolution", ) self.assertTrue(np.allclose(prediction_slice, expected_slice, atol=atol)) def test_marigold_normals_einstein_f32_cpu_G0_S1_P32_E1_B1_M1(self): self._test_marigold_normals( is_fp16=False, device="cpu", generator_seed=0, expected_slice=np.array([0.8971, 0.8971, 0.8971, 0.8971, 0.8971, 0.8971, 0.8971, 0.8971, 0.8971]), num_inference_steps=1, processing_resolution=32, ensemble_size=1, batch_size=1, match_input_resolution=True, ) def test_marigold_normals_einstein_f32_cuda_G0_S1_P768_E1_B1_M1(self): self._test_marigold_normals( is_fp16=False, device="cuda", generator_seed=0, expected_slice=np.array([0.7980, 0.7952, 0.7914, 0.7931, 0.7871, 0.7816, 0.7844, 0.7710, 0.7601]), num_inference_steps=1, processing_resolution=768, ensemble_size=1, batch_size=1, match_input_resolution=True, ) def test_marigold_normals_einstein_f16_cuda_G0_S1_P768_E1_B1_M1(self): self._test_marigold_normals( is_fp16=True, device="cuda", generator_seed=0, expected_slice=np.array([0.7979, 0.7949, 0.7915, 0.7930, 0.7871, 0.7817, 0.7842, 0.7710, 0.7603]), num_inference_steps=1, processing_resolution=768, ensemble_size=1, batch_size=1, match_input_resolution=True, ) def test_marigold_normals_einstein_f16_cuda_G2024_S1_P768_E1_B1_M1(self): self._test_marigold_normals( is_fp16=True, device="cuda", generator_seed=2024, expected_slice=np.array([0.8428, 0.8428, 0.8433, 0.8369, 0.8325, 0.8315, 0.8271, 0.8135, 0.8057]), num_inference_steps=1, processing_resolution=768, ensemble_size=1, batch_size=1, match_input_resolution=True, ) def test_marigold_normals_einstein_f16_cuda_G0_S2_P768_E1_B1_M1(self): self._test_marigold_normals( is_fp16=True, device="cuda", generator_seed=0, expected_slice=np.array([0.7095, 0.7095, 0.7104, 0.7070, 0.7051, 0.7061, 0.7017, 0.6938, 0.6914]), num_inference_steps=2, processing_resolution=768, ensemble_size=1, batch_size=1, match_input_resolution=True, ) def test_marigold_normals_einstein_f16_cuda_G0_S1_P512_E1_B1_M1(self): self._test_marigold_normals( is_fp16=True, device="cuda", generator_seed=0, expected_slice=np.array([0.7168, 0.7163, 0.7163, 0.7080, 0.7061, 0.7046, 0.7031, 0.7007, 0.6987]), num_inference_steps=1, processing_resolution=512, ensemble_size=1, batch_size=1, match_input_resolution=True, ) def test_marigold_normals_einstein_f16_cuda_G0_S1_P768_E3_B1_M1(self): self._test_marigold_normals( is_fp16=True, device="cuda", generator_seed=0, expected_slice=np.array([0.7114, 0.7124, 0.7144, 0.7085, 0.7070, 0.7080, 0.7051, 0.6958, 0.6924]), num_inference_steps=1, processing_resolution=768, ensemble_size=3, ensembling_kwargs={"reduction": "mean"}, batch_size=1, match_input_resolution=True, ) def test_marigold_normals_einstein_f16_cuda_G0_S1_P768_E4_B2_M1(self): self._test_marigold_normals( is_fp16=True, device="cuda", generator_seed=0, expected_slice=np.array([0.7412, 0.7441, 0.7490, 0.7383, 0.7388, 0.7437, 0.7329, 0.7271, 0.7300]), num_inference_steps=1, processing_resolution=768, ensemble_size=4, ensembling_kwargs={"reduction": "mean"}, batch_size=2, match_input_resolution=True, ) def test_marigold_normals_einstein_f16_cuda_G0_S1_P512_E1_B1_M0(self): self._test_marigold_normals( is_fp16=True, device="cuda", generator_seed=0, expected_slice=np.array([0.7188, 0.7144, 0.7134, 0.7178, 0.7207, 0.7222, 0.7231, 0.7041, 0.6987]), num_inference_steps=1, processing_resolution=512, ensemble_size=1, batch_size=1, match_input_resolution=False, )