swagat-panda commited on
Commit
bd41d53
1 Parent(s): c283acc

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +128 -0
README.md ADDED
@@ -0,0 +1,128 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ language:
4
+ - en
5
+ - gu
6
+ - mr
7
+ - hi
8
+ ---
9
+ # Model Card for Model ID
10
+
11
+
12
+ ## Model Details
13
+ The technique of marking the words in a phrase to their appropriate POS
14
+ tags is known as part-of-speech tagging (POS tagging or POST). There are
15
+ two sorts of POS tagging algorithms: rule-based and stochastic, and
16
+ monolingual and multilingual are different types from a modelling
17
+ standpoint. POS tags provide grammatical context to a sentence, which can
18
+ be employed in NLP tasks such as NER, NLU and QNA systems.
19
+ In this research field, a lot of researchers had already tried to propose
20
+ various novel approaches, tags and models like Weightless Artificial
21
+ Neural Network (WANN), different forms of CRF, Bi-LSTM CRF, and
22
+ transformers, various techniques for language tag mixed POS tags to
23
+ handle mixed languages. All this research work leads to the enhancement
24
+ or creating a benchmark for different popular and low resource languages,
25
+ In the state of monolingual or multilingual context. In this model
26
+ we are trying to achieve state-of-the-art model for the Indian language
27
+ context in both native and its Romanised format.
28
+
29
+ ### Model Description
30
+
31
+ The model has been trained on the romanized forms of the Indian languages as well as English, Hindi, Gujarati, and Marathi.i.e(en,gu,mr,hi,gu_romanised,mr_romanised,hi_romanised)
32
+ To use this model you have import this class
33
+
34
+ ```commandline
35
+ from transformers import BertPreTrainedModel, BertModel
36
+ from transformers.modeling_outputs import TokenClassifierOutput
37
+ from torch import nn
38
+ from torch.nn import CrossEntropyLoss
39
+ import torch
40
+
41
+ from torchcrf import CRF
42
+ from transformers import BertTokenizerFast
43
+ from transformers import BertTokenizerFast, Trainer, TrainingArguments
44
+ from transformers.trainer_utils import IntervalStrategy
45
+
46
+ class BertCRF(BertPreTrainedModel):
47
+
48
+ _keys_to_ignore_on_load_unexpected = [r"pooler"]
49
+
50
+ def __init__(self, config):
51
+ super().__init__(config)
52
+ self.num_labels = config.num_labels
53
+
54
+ self.bert = BertModel(config, add_pooling_layer=False)
55
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
56
+ self.classifier = nn.Linear(config.hidden_size, config.num_labels)
57
+ self.crf = CRF(num_tags=config.num_labels, batch_first=True)
58
+ self.init_weights()
59
+
60
+ def forward(
61
+ self,
62
+ input_ids=None,
63
+ attention_mask=None,
64
+ token_type_ids=None,
65
+ position_ids=None,
66
+ head_mask=None,
67
+ inputs_embeds=None,
68
+ labels=None,
69
+ output_attentions=None,
70
+ output_hidden_states=None,
71
+ return_dict=None,
72
+ ):
73
+ r"""
74
+ labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
75
+ Labels for computing the token classification loss. Indices should be in ``[0, ..., config.num_labels -
76
+ 1]``.
77
+ """
78
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
79
+
80
+ outputs = self.bert(
81
+ input_ids,
82
+ attention_mask=attention_mask,
83
+ token_type_ids=token_type_ids,
84
+ position_ids=position_ids,
85
+ head_mask=head_mask,
86
+ inputs_embeds=inputs_embeds,
87
+ output_attentions=output_attentions,
88
+ output_hidden_states=output_hidden_states,
89
+ return_dict=return_dict,
90
+ )
91
+
92
+ sequence_output = outputs[0]
93
+ sequence_output = self.dropout(sequence_output)
94
+ logits = self.classifier(sequence_output)
95
+
96
+ loss = None
97
+ if labels is not None:
98
+ log_likelihood, tags = self.crf(logits, labels), self.crf.decode(logits)
99
+ loss = 0 - log_likelihood
100
+ else:
101
+ tags = self.crf.decode(logits)
102
+ tags = torch.Tensor(tags)
103
+
104
+ if not return_dict:
105
+ output = (tags,) + outputs[2:]
106
+ return ((loss,) + output) if loss is not None else output
107
+
108
+ return loss, tags
109
+ ```
110
+ Some sample output from the model
111
+
112
+ This model uses a different kind of labelling system from it will not only be able to detect language, as well as it can detect the POS of the respective language
113
+
114
+ | Types | Output |
115
+ |--------------------|-------------------------------------------------------------------------------------------------------------------|
116
+ | English | [{'words': ['my', 'name', 'is', 'swagat'], 'labels': ['en-DET', 'enNN', 'en-VB', 'en-NN']}] |
117
+ | Hindi | [{'words': ['मेरा', 'नाम', 'स्वागत', 'है'], 'labels': ['hi-PRP', 'hi-NN', 'hi-NNP', 'hi-VM']}] |
118
+ | Hindi Romanised | [{'words': ['mera', 'naam', 'swagat', 'hai'], 'labels': ['hi_romPRP', 'hi_rom-NN', 'hi_rom-NNP', 'hi_rom-VM']}] |
119
+ | Gujarati | [{'words': ['મારું', 'નામ', 'સ્વગત', 'છે'], 'labels': ['gu-PRP', 'guNN', 'gu-NNP', 'gu-VAUX']}] |
120
+ | Gujarati Romanised | [{'words': ['maru', 'naam', 'swagat', 'che'], 'labels': ['gu_romPRP', 'gu_rom-NN', 'gu_rom-NNP', 'gu_rom-VAUX']}] |
121
+
122
+
123
+ - **Developed by:** Swagat Panda
124
+ - **Finetuned from model :** google/muril-base-cased
125
+
126
+ ### Model Sources
127
+ - **Paper :** https://www.academia.edu/87916386/MULTILINGUAL_APPROACH_TOWARDS_THE_NATIVE_AND_ROMANISED_SCRIPTS_FOR_INDIAN_LANGUGE_CONTEXT_ON_POS_TAGGING?source=swp_share
128
+