|
--- |
|
license: llama2 |
|
language: |
|
- it |
|
tags: |
|
- text-generation-inference |
|
--- |
|
<img src="https://i.ibb.co/6mHSRm3/llamantino53.jpg" alt="llamantino53" border="0" width="200px"> |
|
|
|
# LLaMAntino-2-70b-hf-UltraChat-ITA 🇮🇹 🌟 |
|
*Last Update: 02/02/2024*<br> |
|
<hr> |
|
|
|
## Model description |
|
|
|
<!-- Provide a quick summary of what the model is/does. --> |
|
|
|
**LLaMAntino-2-70b-hf-UltraChat-ITA** is a *Large Language Model (LLM)* that is an instruction-tuned version of **LLaMAntino-2-70b** (an italian-adapted **LLaMA 2 - 70B**). |
|
This model aims to provide Italian NLP researchers with an improved model for italian dialogue use cases. |
|
|
|
The model was trained using *QLora* and using as training data [UltraChat](https://github.com/thunlp/ultrachat) translated to the italian language using [Argos Translate](https://pypi.org/project/argostranslate/1.4.0/). |
|
If you are interested in more details regarding the training procedure, you can find the code we used at the following link: |
|
- **Repository:** https://github.com/swapUniba/LLaMAntino |
|
|
|
**NOTICE**: the code has not been released yet, we apologize for the delay, it will be available asap! |
|
|
|
- **Developed by:** Pierpaolo Basile, Elio Musacchio, Marco Polignano, Lucia Siciliani, Giuseppe Fiameni, Giovanni Semeraro |
|
- **Funded by:** PNRR project FAIR - Future AI Research |
|
- **Compute infrastructure:** [Leonardo](https://www.hpc.cineca.it/systems/hardware/leonardo/) supercomputer |
|
- **Model type:** LLaMA-2 |
|
- **Language(s) (NLP):** Italian |
|
- **License:** Llama 2 Community License |
|
- **Finetuned from model:** [swap-uniba/meta-llama/Llama-2-70b-hf](https://huggingface.co/meta-llama/Llama-2-70b-hf) |
|
|
|
## Prompt Format |
|
|
|
This prompt format based on the [LLaMA 2 prompt template](https://gpus.llm-utils.org/llama-2-prompt-template/) adapted to the italian language was used: |
|
|
|
```python |
|
" [INST] <<SYS>>\n" \ |
|
"Sei un assistente disponibile, rispettoso e onesto di nome Llamantino. " \ |
|
"Rispondi sempre nel modo più utile possibile, pur essendo sicuro. " \ |
|
"Le risposte non devono includere contenuti dannosi, non etici, razzisti, sessisti, tossici, pericolosi o illegali. " \ |
|
"Assicurati che le tue risposte siano socialmente imparziali e positive. " \ |
|
"Se una domanda non ha senso o non è coerente con i fatti, spiegane il motivo invece di rispondere in modo non corretto. " \ |
|
"Se non conosci la risposta a una domanda, non condividere informazioni false.\n" \ |
|
"<</SYS>>\n\n" \ |
|
f"{user_msg_1} [/INST] {model_answer_1} </s> <s> [INST] {user_msg_2} [/INST] {model_answer_2} </s> ... <s> [INST] {user_msg_N} [/INST] {model_answer_N} </s>" |
|
``` |
|
|
|
We recommend using the same prompt in inference to obtain the best results! |
|
|
|
## How to Get Started with the Model |
|
|
|
Below you can find an example of model usage: |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
import transformers |
|
import torch |
|
import os |
|
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3" |
|
|
|
model = "swap-uniba/LLaMAntino-2-70b-hf-UltraChat-ITA" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model) |
|
tokenizer.add_special_tokens({"pad_token":"<unk>"}) |
|
tokenizer.chat_template = "{% set ns = namespace(i=0) %}" \ |
|
"{% for message in messages %}" \ |
|
"{% if message['role'] == 'user' and ns.i == 0 %}" \ |
|
"{{ bos_token +' [INST] <<SYS>>\n' }}" \ |
|
"{{ 'Sei un assistente disponibile, rispettoso e onesto di nome Llamantino. ' }}" \ |
|
"{{ 'Rispondi sempre nel modo più utile possibile, pur essendo sicuro. ' }}" \ |
|
"{{ 'Le risposte non devono includere contenuti dannosi, non etici, razzisti, sessisti, tossici, pericolosi o illegali. ' }}" \ |
|
"{{ 'Assicurati che le tue risposte siano socialmente imparziali e positive. ' }}" \ |
|
"{{ 'Se una domanda non ha senso o non è coerente con i fatti, spiegane il motivo invece di rispondere in modo non corretto. ' }}" \ |
|
"{{ 'Se non conosci la risposta a una domanda, non condividere informazioni false.\n' }}" \ |
|
"{{ '<</SYS>>\n\n' }}" \ |
|
"{{ message['content'] + ' [/INST]' }}" \ |
|
"{% elif message['role'] == 'user' and ns.i != 0 %} " \ |
|
"{{ bos_token + ' [INST] ' + message['content'] + ' [/INST]' }}" \ |
|
"{% elif message['role'] == 'assistant' %}" \ |
|
"{{ ' ' + message['content'] + ' ' + eos_token + ' ' }}" \ |
|
"{% endif %}" \ |
|
"{% set ns.i = ns.i+1 %}" \ |
|
"{% endfor %}" |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
model, |
|
torch_dtype=torch.float16, |
|
device_map='balanced', |
|
use_flash_attention_2=True |
|
) |
|
|
|
pipe = transformers.pipeline(model=model, |
|
device_map="balanced", |
|
tokenizer=tokenizer, |
|
return_full_text=False, # langchain expects the full text |
|
task='text-generation', |
|
max_new_tokens=512, # max number of tokens to generate in the output |
|
temperature=0.7 #temperature |
|
) |
|
messages = [{"role": "user", "content": "Cosa sono i word embeddings?"}] |
|
text = tokenizer.apply_chat_template(messages, tokenize=False) |
|
|
|
sequences = pipe(text) |
|
for seq in sequences: |
|
print(f"{seq['generated_text']}") |
|
|
|
``` |
|
|
|
If you are facing issues when loading the model, you can try to load it **Quantized**: |
|
|
|
```python |
|
model = AutoModelForCausalLM.from_pretrained(model_id, load_in_8bit=True) |
|
``` |
|
|
|
*Note*: |
|
1) The model loading strategy above requires the [*bitsandbytes*](https://pypi.org/project/bitsandbytes/) and [*accelerate*](https://pypi.org/project/accelerate/) libraries |
|
2) The Tokenizer, by default, adds at the beginning of the prompt the '\<BOS\>' token. If that is not the case, add as a starting token the *\<s\>* string. |
|
|
|
## Evaluation |
|
|
|
For a detailed comparison of model performance, check out the [Leaderboard for Italian Language Models](https://huggingface.co/spaces/FinancialSupport/open_ita_llm_leaderboard). |
|
|
|
Here's a breakdown of the performance metrics: |
|
| Metric | hellaswag_it acc_norm | arc_it acc_norm | m_mmlu_it 5-shot acc | Average | |
|
|:----------------------------|:----------------------|:----------------|:---------------------|:--------| |
|
| **Accuracy Normalized** | 0.6566 | 0.5004 | 0.6084 | 0.588 | |
|
|
|
|
|
|
|
## Citation |
|
|
|
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> |
|
|
|
If you use this model in your research, please cite the following: |
|
|
|
```bibtex |
|
@misc{basile2023llamantino, |
|
title={LLaMAntino: LLaMA 2 Models for Effective Text Generation in Italian Language}, |
|
author={Pierpaolo Basile and Elio Musacchio and Marco Polignano and Lucia Siciliani and Giuseppe Fiameni and Giovanni Semeraro}, |
|
year={2023}, |
|
eprint={2312.09993}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|
|
*Notice:* Llama 2 is licensed under the LLAMA 2 Community License, Copyright © Meta Platforms, Inc. All Rights Reserved. [*License*](https://ai.meta.com/llama/license/) |
|
|