File size: 8,934 Bytes
12637c4
6cec86d
203facb
6cec86d
cdffcf2
203facb
 
6cec86d
 
 
 
 
 
 
 
 
 
 
 
 
203facb
3c1e933
0eba5bb
 
0d21689
0eba5bb
877f844
 
 
85e6c39
 
665c412
 
cb0ed1d
 
 
3d480f6
 
 
 
 
 
 
7c2db1a
 
3d480f6
 
6cab6c2
48e18ae
6cab6c2
 
7c2db1a
3d480f6
7c2db1a
cb0ed1d
848a6af
 
 
 
 
2d4b3bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d480f6
2d4b3bf
 
 
 
 
 
 
 
3d480f6
 
 
 
2d4b3bf
a4bb95e
 
2d4b3bf
 
 
 
3d480f6
2d4b3bf
 
a4bb95e
 
 
 
 
 
 
 
 
3d480f6
a4bb95e
3d480f6
a4bb95e
 
 
 
 
 
2d4b3bf
 
 
 
 
 
 
 
 
 
 
 
3d480f6
2d4b3bf
 
 
 
 
 
 
 
 
 
 
 
 
 
3d480f6
 
 
 
2d4b3bf
a4bb95e
 
2d4b3bf
 
 
 
3d480f6
2d4b3bf
 
 
a4bb95e
 
 
 
 
 
 
 
3d480f6
a4bb95e
3d480f6
a4bb95e
 
 
 
 
 
2d4b3bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d480f6
2d4b3bf
 
 
 
 
 
 
 
 
 
 
 
3d480f6
 
 
 
2d4b3bf
 
 
 
 
3d480f6
2d4b3bf
 
 
 
 
 
 
848a6af
 
cb0ed1d
7c2db1a
cb0ed1d
848a6af
 
 
a4bb95e
 
 
 
 
 
 
 
 
 
848a6af
bb8a7f9
848a6af
 
 
 
 
bb8a7f9
203facb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
---
datasets:
- gsarti/clean_mc4_it
- Chat-Error/wizard_alpaca_dolly_orca
- jondurbin/truthy-dpo-v0.1
base_model: meta-llama/Meta-Llama-3-8B-Instruct
model_creator: Marco Polignano - SWAP Research Group
language:
- en
- it
metrics:
- accuracy
pipeline_tag: text-generation
tags:
- facebook
- meta
- pythorch
- llama
- llama-3
- llamantino
license: llama3
---
<img src="https://cdn-uploads.huggingface.co/production/uploads/5df8bb21da6d0311fd3d540f/cZoZdwQOPdQsnQmDXHcSn.png" alt="llamantino3_anita" border="0" width="800px">
<hr>
<!--<img src="https://i.ibb.co/6mHSRm3/llamantino53.jpg" width="200"/>-->

<p style="text-align:justify;"><b>LLaMAntino-3-ANITA-8B-Instr-DPO-ITA</b> is a model of the <a href="https://huggingface.co/swap-uniba"><b>LLaMAntino</b></a> - <i>Large Language Models family</i>.
The model is an instruction-tuned version of <a href="https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct"><b>Meta-Llama-3-8b-instruct</b></a> (a fine-tuned <b>LLaMA 3 model</b>).
This model version aims to be the a <b>Multilingual Model</b> 🏁 -- EN 🇺🇸 + ITA🇮🇹 -- to further fine-tune for the Specific Italian Task</p>


The 🌟**ANITA project**🌟 *(**A**dvanced **N**atural-based interaction for the **ITA**lian language)*
wants to provide Italian NLP researchers with an improved model the for Italian Language 🇮🇹 use cases.

<hr>

## Model Details
*Last Update: 10/05/2024*<br>

<img src="https://static.vecteezy.com/system/resources/previews/016/833/880/large_2x/github-logo-git-hub-icon-with-text-on-white-background-free-vector.jpg" width="200"> [https://github.com/marcopoli/LLaMAntino-3-ANITA](https://github.com/marcopoli/LLaMAntino-3-ANITA)<br>

<hr>

## Specifications

- **Model developers**: Ph.D. Marco Polignano - University of Bari Aldo Moro, Italy - SWAP Research Group
- **Variations**: The model release has been **supervised fine-tuning (SFT)** using **QLoRA** 4bit, on two instruction-based datasets. **DPO** approach over the *jondurbin/truthy-dpo-v0.1* dataset is used to align with human preferences for helpfulness and safety.
- **Input**: Models input text only.
- **Language**: Multilingual🏁 + Italian 🇮🇹
- **Output**: Models generate text and code only.
- **Model Architecture**: *Llama 3 architecture*.
- **Context length**: 8K, 8192.
- **Library Used**: [Unsloth](https://unsloth.ai/)
<hr>

## Playground

To use the model directly, there are many ways to get started, choose one of the following ways to experience it.


### Transformers

For direct use with `transformers`, you can easily get started with the following steps.

- Firstly, you need to install transformers via the command below with `pip`.

  ```bash
  pip install -U transformers
  ```

- Right now, you can start using the model directly.

  ```python
  import torch
  from transformers import (
      AutoModelForCausalLM,
      AutoTokenizer,
  )

  base_model = "m-polignano-uniba/LLaMAntino-3-ANITA-8B-Instr-DPO-ITA"
  model = AutoModelForCausalLM.from_pretrained(
      base_model,
      torch_dtype=torch.bfloat16,
      device_map="auto",
  )
  tokenizer = AutoTokenizer.from_pretrained(base_model)

  messages = [
      {"role": "system", "content": {"role": "system", "content": "Sei un an assistente AI per la lingua Italiana di nome LLaMAntino-3 ANITA \
      (Advanced Natural-based interaction for the ITAlian language). \
      Rispondi nella lingua usata per la domanda in modo chiaro, semplice ed esaustivo. "},
      {"role": "user", "content": "Why is the sky blue?"}
  ]

  #Method 1
  prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
  inputs = tokenizer(prompt, return_tensors="pt", add_special_tokens=False)
  for k,v in inputs.items():
      inputs[k] = v.cuda()
  outputs = model.generate(**inputs, max_new_tokens=512, do_sample=True, top_p=0.9, temperature=0.6)
  results = tokenizer.batch_decode(outputs)[0]
  print(results)

  #Method 2
  import transformers
  pipe = transformers.pipeline(
      model=model,
      tokenizer=tokenizer,
      return_full_text=False, # langchain expects the full text
      task='text-generation',
      max_new_tokens=512, # max number of tokens to generate in the output
      temperature=0.6,  #temperature for more or less creative answers
      do_sample=True,
      top_p=0.9,
  )

  sequences = pipe(messages)
  for seq in sequences:
      print(f"{seq['generated_text']}")
  
  ```

- Additionally, you can also use a model with **4bit quantization** to reduce the required resources at least. You can start with the code below.

  ```python
  import torch
  from transformers import (
      AutoModelForCausalLM,
      AutoTokenizer,
      BitsAndBytesConfig,
  )

  base_model = "m-polignano-uniba/LLaMAntino-3-ANITA-8B-Instr-DPO-ITA"
  bnb_config = BitsAndBytesConfig(
      load_in_4bit=True,
      bnb_4bit_quant_type="nf4",
      bnb_4bit_compute_dtype=torch.bfloat16,
      bnb_4bit_use_double_quant=False,
  )
  model = AutoModelForCausalLM.from_pretrained(
      base_model,
      quantization_config=bnb_config,
      device_map="auto",
  )
  tokenizer = AutoTokenizer.from_pretrained(base_model)

  messages = [
     {"role": "system", "content": {"role": "system", "content": "Sei un an assistente AI per la lingua Italiana di nome LLaMAntino-3 ANITA \
     (Advanced Natural-based interaction for the ITAlian language). \
     Rispondi nella lingua usata per la domanda in modo chiaro, semplice ed esaustivo. "},
      {"role": "user", "content": "Why is the sky blue?"}
  ]

  #Method 1
  prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
  inputs = tokenizer(prompt, return_tensors="pt", add_special_tokens=False)
  for k,v in inputs.items():
      inputs[k] = v.cuda()
  outputs = model.generate(**inputs, max_new_tokens=512, do_sample=True, top_p=0.9, temperature=0.6)
  results = tokenizer.batch_decode(outputs)[0]
  print(results)

  #Method 2
  import transformers
  pipe = transformers.pipeline(
      model=model,
      tokenizer=tokenizer,
      return_full_text=False, # langchain expects the full text
      task='text-generation',
      max_new_tokens=512, # max number of tokens to generate in the output
      temperature=0.6,  #temperature for more or less creative answers
      do_sample=True,
      top_p=0.9,
  )

  sequences = pipe(messages)
  for seq in sequences:
      print(f"{seq['generated_text']}")

  ```

### Unsloth

For direct use with `unsloth`, you can easily get started with the following steps.

- Firstly, you need to install unsloth via the command below with `pip`.
  ```bash
  pip install "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"
  pip install --no-deps xformers trl peft accelerate bitsandbytes
  ```

- Initialize and optimize the model before use.
  ```python
  from unsloth import FastLanguageModel
  import torch

  base_model = "m-polignano-uniba/LLaMAntino-3-ANITA-8B-Instr-DPO-ITA"
  model, tokenizer = FastLanguageModel.from_pretrained(
      model_name = base_model,
      max_seq_length = 8192,
      dtype = None,
      load_in_4bit = True, # Change to `False` if you don't want to use 4bit quantization.
  )
  FastLanguageModel.for_inference(model)
  ```

- Right now, you can start using the model directly.
  ```python
  messages = [
      {"role": "system", "content": {"role": "system", "content": "Sei un an assistente AI per la lingua Italiana di nome LLaMAntino-3 ANITA \
     (Advanced Natural-based interaction for the ITAlian language). \
     Rispondi nella lingua usata per la domanda in modo chiaro, semplice ed esaustivo. "},
      {"role": "user", "content": "Why is the sky blue?"}
  ]
  prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
  inputs = tokenizer(prompt, return_tensors="pt", add_special_tokens=False)
  for k,v in inputs.items():
      inputs[k] = v.cuda()
  outputs = model.generate(**inputs, max_new_tokens=512, do_sample=True, top_p=0.9, temperature=0.6)
  results = tokenizer.batch_decode(outputs)[0]
  print(results)
  ```



<hr>

## Unsloth

<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/made with unsloth.png" width="200px" align="center" />

[Unsloth](https://unsloth.ai), a great tool that helps us easily develop products, at a lower cost than expected.

## Citation instructions
```bibtex
@misc{basile2023llamantino,
      title={LLaMAntino: LLaMA 2 Models for Effective Text Generation in Italian Language}, 
      author={Pierpaolo Basile and Elio Musacchio and Marco Polignano and Lucia Siciliani and Giuseppe Fiameni and Giovanni Semeraro},
      year={2023},
      eprint={2312.09993},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
```

```bibtex
@article{llama3modelcard,
  title={Llama 3 Model Card},
  author={AI@Meta},
  year={2024},
  url = {https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md}
}
```