m-polignano-uniba commited on
Commit
bbe21d0
1 Parent(s): e3b7bf3

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +4 -5
README.md CHANGED
@@ -11,7 +11,6 @@ datasets:
11
  - andersonbcdefg/supernatural-instructions-2m
12
  - HuggingFaceH4/ultrachat_200k
13
  - HuggingFaceH4/ultrafeedback_binarized
14
- - mlabonne/orpo-dpo-mix-40k
15
  language:
16
  - en
17
  - it
@@ -245,7 +244,7 @@ wants to provide Italian NLP researchers with an improved model the for Italian
245
  ## Specifications
246
 
247
  - **Model developers**: Ph.D. Marco Polignano - University of Bari Aldo Moro, Italy
248
- - **Variations**: The model release has been **supervised fine-tuning (SFT)** using **QLoRA** in the 4bit version, on a long list of instruction-based datasets. **ORPO** approach over the *mlabonne/orpo-dpo-mix-40k* dataset is used to align with human preferences for helpfulness and safety.
249
  - **Input**: Models input text only.
250
  - **Output**: Models generate text and code only.
251
  - **Model Architecture**: *Llama 3 architecture*.
@@ -276,7 +275,7 @@ For direct use with `transformers`, you can easily get started with the followin
276
  AutoTokenizer,
277
  )
278
 
279
- base_model = "m-polignano-uniba/LLaMAntino-3-ANITA-8B-sft-ORPO"
280
  model = AutoModelForCausalLM.from_pretrained(
281
  base_model,
282
  torch_dtype=torch.bfloat16,
@@ -307,7 +306,7 @@ For direct use with `transformers`, you can easily get started with the followin
307
  BitsAndBytesConfig,
308
  )
309
 
310
- base_model = "m-polignano-uniba/LLaMAntino-3-ANITA-8B-sft-ORPO"
311
  bnb_config = BitsAndBytesConfig(
312
  load_in_4bit=True,
313
  bnb_4bit_quant_type="nf4",
@@ -350,7 +349,7 @@ For direct use with `unsloth`, you can easily get started with the following ste
350
  from unsloth import FastLanguageModel
351
  import torch
352
 
353
- base_model = "m-polignano-uniba/LLaMAntino-3-ANITA-8B-sft-ORPO"
354
  model, tokenizer = FastLanguageModel.from_pretrained(
355
  model_name = base_model,
356
  max_seq_length = 8192,
 
11
  - andersonbcdefg/supernatural-instructions-2m
12
  - HuggingFaceH4/ultrachat_200k
13
  - HuggingFaceH4/ultrafeedback_binarized
 
14
  language:
15
  - en
16
  - it
 
244
  ## Specifications
245
 
246
  - **Model developers**: Ph.D. Marco Polignano - University of Bari Aldo Moro, Italy
247
+ - **Variations**: The model release has been **supervised fine-tuning (SFT)** using **QLoRA**, on a long list of instruction-based datasets. **DPO** approach over the *HuggingFaceH4/ultrafeedback_binarized* dataset is used to align with human preferences for helpfulness and safety.
248
  - **Input**: Models input text only.
249
  - **Output**: Models generate text and code only.
250
  - **Model Architecture**: *Llama 3 architecture*.
 
275
  AutoTokenizer,
276
  )
277
 
278
+ base_model = "m-polignano-uniba/LLaMAntino-3-ANITA-8B-sft-DPO"
279
  model = AutoModelForCausalLM.from_pretrained(
280
  base_model,
281
  torch_dtype=torch.bfloat16,
 
306
  BitsAndBytesConfig,
307
  )
308
 
309
+ base_model = "m-polignano-uniba/LLaMAntino-3-ANITA-8B-sft-DPO"
310
  bnb_config = BitsAndBytesConfig(
311
  load_in_4bit=True,
312
  bnb_4bit_quant_type="nf4",
 
349
  from unsloth import FastLanguageModel
350
  import torch
351
 
352
+ base_model = "m-polignano-uniba/LLaMAntino-3-ANITA-8B-sft-DPO"
353
  model, tokenizer = FastLanguageModel.from_pretrained(
354
  model_name = base_model,
355
  max_seq_length = 8192,