m-polignano-uniba
commited on
Commit
•
bbe21d0
1
Parent(s):
e3b7bf3
Update README.md
Browse files
README.md
CHANGED
@@ -11,7 +11,6 @@ datasets:
|
|
11 |
- andersonbcdefg/supernatural-instructions-2m
|
12 |
- HuggingFaceH4/ultrachat_200k
|
13 |
- HuggingFaceH4/ultrafeedback_binarized
|
14 |
-
- mlabonne/orpo-dpo-mix-40k
|
15 |
language:
|
16 |
- en
|
17 |
- it
|
@@ -245,7 +244,7 @@ wants to provide Italian NLP researchers with an improved model the for Italian
|
|
245 |
## Specifications
|
246 |
|
247 |
- **Model developers**: Ph.D. Marco Polignano - University of Bari Aldo Moro, Italy
|
248 |
-
- **Variations**: The model release has been **supervised fine-tuning (SFT)** using **QLoRA
|
249 |
- **Input**: Models input text only.
|
250 |
- **Output**: Models generate text and code only.
|
251 |
- **Model Architecture**: *Llama 3 architecture*.
|
@@ -276,7 +275,7 @@ For direct use with `transformers`, you can easily get started with the followin
|
|
276 |
AutoTokenizer,
|
277 |
)
|
278 |
|
279 |
-
base_model = "m-polignano-uniba/LLaMAntino-3-ANITA-8B-sft-
|
280 |
model = AutoModelForCausalLM.from_pretrained(
|
281 |
base_model,
|
282 |
torch_dtype=torch.bfloat16,
|
@@ -307,7 +306,7 @@ For direct use with `transformers`, you can easily get started with the followin
|
|
307 |
BitsAndBytesConfig,
|
308 |
)
|
309 |
|
310 |
-
base_model = "m-polignano-uniba/LLaMAntino-3-ANITA-8B-sft-
|
311 |
bnb_config = BitsAndBytesConfig(
|
312 |
load_in_4bit=True,
|
313 |
bnb_4bit_quant_type="nf4",
|
@@ -350,7 +349,7 @@ For direct use with `unsloth`, you can easily get started with the following ste
|
|
350 |
from unsloth import FastLanguageModel
|
351 |
import torch
|
352 |
|
353 |
-
base_model = "m-polignano-uniba/LLaMAntino-3-ANITA-8B-sft-
|
354 |
model, tokenizer = FastLanguageModel.from_pretrained(
|
355 |
model_name = base_model,
|
356 |
max_seq_length = 8192,
|
|
|
11 |
- andersonbcdefg/supernatural-instructions-2m
|
12 |
- HuggingFaceH4/ultrachat_200k
|
13 |
- HuggingFaceH4/ultrafeedback_binarized
|
|
|
14 |
language:
|
15 |
- en
|
16 |
- it
|
|
|
244 |
## Specifications
|
245 |
|
246 |
- **Model developers**: Ph.D. Marco Polignano - University of Bari Aldo Moro, Italy
|
247 |
+
- **Variations**: The model release has been **supervised fine-tuning (SFT)** using **QLoRA**, on a long list of instruction-based datasets. **DPO** approach over the *HuggingFaceH4/ultrafeedback_binarized* dataset is used to align with human preferences for helpfulness and safety.
|
248 |
- **Input**: Models input text only.
|
249 |
- **Output**: Models generate text and code only.
|
250 |
- **Model Architecture**: *Llama 3 architecture*.
|
|
|
275 |
AutoTokenizer,
|
276 |
)
|
277 |
|
278 |
+
base_model = "m-polignano-uniba/LLaMAntino-3-ANITA-8B-sft-DPO"
|
279 |
model = AutoModelForCausalLM.from_pretrained(
|
280 |
base_model,
|
281 |
torch_dtype=torch.bfloat16,
|
|
|
306 |
BitsAndBytesConfig,
|
307 |
)
|
308 |
|
309 |
+
base_model = "m-polignano-uniba/LLaMAntino-3-ANITA-8B-sft-DPO"
|
310 |
bnb_config = BitsAndBytesConfig(
|
311 |
load_in_4bit=True,
|
312 |
bnb_4bit_quant_type="nf4",
|
|
|
349 |
from unsloth import FastLanguageModel
|
350 |
import torch
|
351 |
|
352 |
+
base_model = "m-polignano-uniba/LLaMAntino-3-ANITA-8B-sft-DPO"
|
353 |
model, tokenizer = FastLanguageModel.from_pretrained(
|
354 |
model_name = base_model,
|
355 |
max_seq_length = 8192,
|