File size: 67,767 Bytes
8149d4f 22c1239 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 |
---
license: apache-2.0
---
# ERNIE 3.0 轻量级模型
**目录**
* [模型介绍](#模型介绍)
* [在线蒸馏技术](#在线蒸馏技术)
* [模型效果](#模型效果)
* [微调](#微调)
* [模型压缩](#模型压缩)
* [环境依赖](#环境依赖)
* [模型压缩 API 使用](#模型压缩API使用)
* [压缩效果](#压缩效果)
* [精度测试](#精度测试)
* [性能测试](#性能测试)
* [CPU 性能](#CPU性能)
* [GPU 性能](#CPU性能)
* [使用 FasterTokenizer 加速](#使用FasterTokenizer加速)
* [部署](#部署)
* [Python 部署](#Python部署)
* [服务化部署](#服务化部署)
* [Paddle2ONNX 部署](#Paddle2ONNX部署)
* [Notebook教程](#Notebook教程)
* [参考文献](#参考文献)
<a name="模型介绍"></a>
## 模型介绍
本次开源的模型是在文心大模型ERNIE 3.0 基础上通过**在线蒸馏技术**得到的轻量级模型,模型结构与 ERNIE 2.0 保持一致,相比 ERNIE 2.0 具有更强的中文效果。
相关技术详解可参考文章[《解析全球最大中文单体模型鹏城-百度·文心技术细节》](https://www.jiqizhixin.com/articles/2021-12-08-9)
<a name="在线蒸馏技术"></a>
### 在线蒸馏技术
在线蒸馏技术在模型学习的过程中周期性地将知识信号传递给若干个学生模型同时训练,从而在蒸馏阶段一次性产出多种尺寸的学生模型。相对传统蒸馏技术,该技术极大节省了因大模型额外蒸馏计算以及多个学生的重复知识传递带来的算力消耗。
这种新颖的蒸馏方式利用了文心大模型的规模优势,在蒸馏完成后保证了学生模型的效果和尺寸丰富性,方便不同性能需求的应用场景使用。此外,由于文心大模型的模型尺寸与学生模型差距巨大,模型蒸馏难度极大甚至容易失效。为此,通过引入了助教模型进行蒸馏的技术,利用助教作为知识传递的桥梁以缩短学生模型和大模型表达空间相距过大的问题,从而促进蒸馏效率的提升。
更多技术细节可以参考论文:
- [ERNIE-Tiny: A Progressive Distillation Framework for Pretrained Transformer Compression](https://arxiv.org/abs/2106.02241)
- [ERNIE 3.0 Titan: Exploring Larger-scale Knowledge Enhanced Pre-training for Language Understanding and Generation](https://arxiv.org/abs/2112.12731)
<p align="center">
<img width="644" alt="image" src="https://user-images.githubusercontent.com/1371212/168516904-3fff73e0-010d-4bef-adc1-4d7c97a9c6ff.png" title="ERNIE 3.0 Online Distillation">
</p>
<a name="模型效果"></a>
## 模型效果
本项目开源 **ERNIE 3.0 _Base_** 、**ERNIE 3.0 _Medium_** 、 **ERNIE 3.0 _Mini_** 、 **ERNIE 3.0 _Micro_** 、 **ERNIE 3.0 _Nano_** 五个模型:
- [**ERNIE 3.0-_Base_**](https://bj.bcebos.com/paddlenlp/models/transformers/ernie_3.0/ernie_3.0_base_zh.pdparams) (_12-layer, 768-hidden, 12-heads_)
- [**ERNIE 3.0-_Medium_**](https://bj.bcebos.com/paddlenlp/models/transformers/ernie_3.0/ernie_3.0_medium_zh.pdparams) (_6-layer, 768-hidden, 12-heads_)
- [**ERNIE 3.0-_Mini_**](https://bj.bcebos.com/paddlenlp/models/transformers/ernie_3.0/ernie_3.0_mini_zh.pdparams) (_6-layer, 384-hidden, 12-heads_)
- [**ERNIE 3.0-_Micro_**](https://bj.bcebos.com/paddlenlp/models/transformers/ernie_3.0/ernie_3.0_micro_zh.pdparams) (_4-layer, 384-hidden, 12-heads_)
- [**ERNIE 3.0-_Nano_**](https://bj.bcebos.com/paddlenlp/models/transformers/ernie_3.0/ernie_3.0_nano_zh.pdparams) (_4-layer, 312-hidden, 12-heads_)
下面是 PaddleNLP 中轻量级中文模型的**效果-时延图**。横坐标表示在 IFLYTEK 数据集 (最大序列长度设置为 128) 上测试的延迟(latency,单位:ms),纵坐标是 CLUE 10 个任务上的平均精度(包含文本分类、文本匹配、自然语言推理、代词消歧、阅读理解等任务),其中 CMRC2018 阅读理解任务的评价指标是 Exact Match(EM),其他任务的评价指标均是 Accuracy。图中越靠**左上**的模型,精度和性能水平越高。
图中模型名下方标注了模型的参数量,测试环境见[性能测试](#性能测试)。
batch_size=32 时,CPU 下的效果-时延图(线程数 1 和 8):
<table>
<tr>
<td><a><img src="https://user-images.githubusercontent.com/26483581/175852121-2798b5c9-d122-4ac0-b4c8-da46b89b5512.png"></a></td>
<td><a><img src="https://user-images.githubusercontent.com/26483581/175852129-bbe58835-8eec-45d5-a4a9-cc2cf9a3db6a.png"></a></td>
</tr>
</table>
batch_size=1 时,CPU 下的效果-时延图(线程数 1 和 8):
<table>
<tr>
<td><a><img src="https://user-images.githubusercontent.com/26483581/175852106-658e18e7-705b-4f53-bad0-027281163ae3.png"></a></td>
<td><a><img src="https://user-images.githubusercontent.com/26483581/175852112-4b89d675-7c95-4d75-84b6-db5a6ea95e2c.png"></a></td>
</tr>
</table>
batch_size=32 和 1,预测精度为 FP16 时,GPU 下的效果-时延图:
<table>
<tr>
<td><a><img src="https://user-images.githubusercontent.com/26483581/175854679-3247f42e-8716-4a36-b5c6-9ce4661b36c7.png"></a></td>
<td><a><img src="https://user-images.githubusercontent.com/26483581/175854670-57878b34-c213-47ac-b620-aaaec082f435.png"></a></td>
</tr>
</table>
从图上可看出,ERNIE 3.0 系列轻量级模型在精度和性能上的综合表现已全面领先于 UER-py、Huawei-Noah 以及 HFL 的中文模型。且当 batch_size=1、预测精度为 FP16 时,在 GPU 上宽且浅的模型的推理性能更有优势。
在 CLUE **验证集**上评测指标如下表所示:
<table style="width:100%;" cellpadding="2" cellspacing="0" border="1" bordercolor="#000000">
<tbody>
<tr>
<td style="text-align:center;vertical-align:middle">
<span style="font-size:18px;">Arch</span>
</td>
<td style="text-align:center">
<span style="font-size:18px;">Model</span>
</td>
<td style="text-align:center">
<span style="font-size:18px;">AVG</span>
</td>
<td style="text-align:center">
<span style="font-size:18px;">AFQMC</span>
</td>
<td style="text-align:center;">
<span style="font-size:18px;">TNEWS</span>
</td>
<td style="text-align:center;">
<span style="font-size:18px;">IFLYTEK</span>
</td>
<td style="text-align:center;">
<span style="font-size:18px;">CMNLI</span>
</td>
<td style="text-align:center;">
<span style="font-size:18px;">OCNLI</span>
</td>
<td style="text-align:center;">
<span style="font-size:18px;">CLUEWSC2020</span>
</td>
<td style="text-align:center;">
<span style="font-size:18px;">CSL</span>
</td>
<td style="text-align:center;">
<span style="font-size:18px;">CMRC2018</span>
</td>
<td style="text-align:center;">
<span style="font-size:18px;">CHID</span>
</td>
<td style="text-align:center;">
<span style="font-size:18px;">C<sup>3</sup></span>
</td>
</tr>
<tr>
<td rowspan=2 align=center> 24L1024H </td>
<td style="text-align:center">
<span style="font-size:18px"><b>ERNIE 2.0-Large-zh</b></span>
</td>
<td style="text-align:center">
<span style="font-size:18px"><b>77.03</b></span>
</td>
<td style="text-align:center">
<span style="font-size:18px"><b>76.41</b></span>
</td>
<td style="text-align:center">
<span style="font-size:18px"><b>59.67</b></span>
</td>
<td style="text-align:center">
<span style="font-size:18px"><b>62.29</b></span>
</td>
<td style="text-align:center">
<span style="font-size:18px">83.82</span>
</td>
<td style="text-align:center">
<span style="font-size:18px"><b>79.69</b></span>
</td>
<td style="text-align:center">
<span style="font-size:18px">89.14</span>
</td>
<td style="text-align:center">
<span style="font-size:18px"><b>84.10</b></span>
</td>
<td style="text-align:center">
<span style="font-size:18px"><b>71.48/90.35</b></span>
</td>
<td style="text-align:center">
<span style="font-size:18px">85.52</span>
</td>
<td style="text-align:center">
<span style="font-size:18px"><b>78.12</b></span>
</td>
</tr>
<tr>
<td style="text-align:center">
<span style="font-size:18px">RoBERTa-wwm-ext-large</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">76.61</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">76.00</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">59.33</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">62.02</span>
</td>
<td style="text-align:center">
<span style="font-size:18px"><b>83.88</b></span>
</td>
<td style="text-align:center">
<span style="font-size:18px">78.81</span>
</td>
<td style="text-align:center">
<span style="font-size:18px"><b>90.79</b></span>
</td>
<td style="text-align:center">
<span style="font-size:18px">83.67</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">70.58/89.82</span>
</td>
<td style="text-align:center">
<span style="font-size:18px"><b>85.72</b></span>
</td>
<td style="text-align:center">
<span style="font-size:18px">75.26</span>
</td>
</tr>
<tr>
<td rowspan=1 align=center> 20L1024H </td>
<td style="text-align:center">
<span style="font-size:18px"><b>ERNIE 3.0-Xbase-zh</b></span>
</td>
<td style="text-align:center">
<span style="font-size:18px"><b>78.71</b></span>
</td>
<td style="text-align:center">
<span style="font-size:18px"><b>76.85</b></span>
</td>
<td style="text-align:center">
<span style="font-size:18px"><b>59.89</b></span>
</td>
<td style="text-align:center">
<span style="font-size:18px"><b>62.41</b></span>
</td>
<td style="text-align:center">
<span style="font-size:18px"><b>84.76</b></span>
</td>
<td style="text-align:center">
<span style="font-size:18px"><b>82.51</b></span>
</td>
<td style="text-align:center">
<span style="font-size:18px"><b>89.80</b></span>
</td>
<td style="text-align:center">
<span style="font-size:18px"><b>84.47</b></span>
</td>
<td style="text-align:center">
<span style="font-size:18px"><b>75.49/92.67</b></span>
</td>
<td style="text-align:center">
<span style="font-size:18px"><b>86.36</b></span>
</td>
<td style="text-align:center">
<span style="font-size:18px"><b>84.59</b></span>
</td>
</tr>
<tr>
<td rowspan=8 align=center> 12L768H </td>
<td style="text-align:center">
<span style="font-size:18px">
<a href="https://bj.bcebos.com/paddlenlp/models/transformers/ernie_3.0/ernie_3.0_base_zh.pdparams">
ERNIE 3.0-Base-zh
</a>
</span>
</td>
<td style="text-align:center">
<span style="font-size:18px"><b>76.05</b></span>
</td>
<td style="text-align:center">
<span style="font-size:18px"><b>75.93</b></span>
</td>
<td style="text-align:center">
<span style="font-size:18px">58.26</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">61.56</span>
</td>
<td style="text-align:center">
<span style="font-size:18px"><b>83.02</b></span>
</td>
<td style="text-align:center">
<span style="font-size:18px"><b>80.10</b></span>
</td>
<td style="text-align:center">
<span style="font-size:18px">86.18</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">82.63</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">70.71/90.41</span>
</td>
<td style="text-align:center">
<span style="font-size:18px"><b>84.26</b></span>
</td>
<td style="text-align:center">
<span style="font-size:18px"><b>77.88</b></span>
</td>
</tr>
<tr>
<td style="text-align:center">
<span style="font-size:18px">ERNIE-Gram-zh</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">75.72</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">75.28</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">57.88</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">60.87</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">82.90</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">79.08</span>
</td>
<td style="text-align:center">
<span style="font-size:18px"><b>88.82</b></span>
</td>
<td style="text-align:center">
<span style="font-size:18px"><b>82.83</b></span>
</td>
<td style="text-align:center">
<span style="font-size:18px"><b>71.82/90.38</b></span>
</td>
<td style="text-align:center">
<span style="font-size:18px">84.04</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">73.69</span>
</td>
</tr>
<tr>
<td style="text-align:center">
<span style="font-size:18px">ERNIE 2.0-Base-zh</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">74.95</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">76.25</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">58.53</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">61.72</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">83.07</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">78.81</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">84.21</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">82.77</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">68.22/88.71</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">82.78</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">73.19</span>
</td>
</tr>
<tr>
<td style="text-align:center">
<span style="font-size:18px">Langboat/Mengzi-BERT-Base</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">74.69</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">75.35</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">57.76</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">61.64</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">82.41</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">77.93</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">88.16</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">82.20</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">67.04/88.35</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">83.74</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">70.70</span>
</td>
</tr>
<tr>
<td style="text-align:center">
<span style="font-size:18px">ERNIE 1.0-Base-zh</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">74.17</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">74.84</span>
</td>
<td style="text-align:center">
<span style="font-size:18px"><b>58.91</b></span>
</td>
<td style="text-align:center">
<span style="font-size:18px"><b>62.25</b></span>
</td>
<td style="text-align:center">
<span style="font-size:18px">81.68</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">76.58</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">85.20</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">82.77</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">67.32/87.83</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">82.47</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">69.68</span>
</td>
</tr>
<tr>
<td style="text-align:center">
<span style="font-size:18px">RoBERTa-wwm-ext</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">74.11</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">74.60</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">58.08</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">61.23</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">81.11</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">76.92</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">88.49</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">80.77</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">68.39/88.50</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">83.43</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">68.03</span>
</td>
</tr>
<tr>
<td style="text-align:center">
<span style="font-size:18px">BERT-Base-Chinese</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">72.57</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">74.63</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">57.13</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">61.29</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">80.97</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">75.22</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">81.91</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">81.90</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">65.30/86.53</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">82.01</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">65.38</span>
</td>
</tr>
<tr>
<td style="text-align:center">
<span style="font-size:18px">UER/Chinese-RoBERTa-Base</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">71.78</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">72.89</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">57.62</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">61.14</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">80.01</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">75.56</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">81.58</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">80.80</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">63.87/84.95</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">81.52</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">62.76</span>
</td>
</tr>
<tr>
<td rowspan=1 align=center> 8L512H </td>
<td style="text-align:center">
<span style="font-size:18px">UER/Chinese-RoBERTa-Medium</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">67.06</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">70.64</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">56.10</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">58.29</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">77.35</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">71.90</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">68.09</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">78.63</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">57.63/78.91</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">75.13</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">56.84</span>
</td>
</tr>
<tr>
<td rowspan=5 align=center> 6L768H </td>
<td style="text-align:center">
<span style="font-size:18px">
<a href="https://bj.bcebos.com/paddlenlp/models/transformers/ernie_3.0/ernie_3.0_medium_zh.pdparams">
ERNIE 3.0-Medium-zh
</a>
</span>
</td>
<td style="text-align:center">
<span style="font-size:18px"><b>72.49</b></span>
</td>
<td style="text-align:center">
<span style="font-size:18px"><b>73.37</b></span>
</td>
<td style="text-align:center">
<span style="font-size:18px"><b>57.00</b></span>
</td>
<td style="text-align:center">
<span style="font-size:18px">60.67</span>
</td>
<td style="text-align:center">
<span style="font-size:18px"><b>80.64</b></span>
</td>
<td style="text-align:center">
<span style="font-size:18px"><b>76.88</b></span>
</td>
<td style="text-align:center">
<span style="font-size:18px"><b>79.28</b></span>
</td>
<td style="text-align:center">
<span style="font-size:18px"><b>81.60</b></span>
</td>
<td style="text-align:center">
<span style="font-size:18px"><b>65.83/87.30</b></span>
</td>
<td style="text-align:center">
<span style="font-size:18px"><b>79.91</b></span>
</td>
<td style="text-align:center">
<span style="font-size:18px"><b>69.73</b></span>
</td>
</tr>
<tr>
<td style="text-align:center">
<span style="font-size:18px">HLF/RBT6, Chinese</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">70.06</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">73.45</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">56.82</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">59.64</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">79.36</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">73.32</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">76.64</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">80.67</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">62.72/84.77</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">78.17</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">59.85</span>
</td>
</tr>
<tr>
<td style="text-align:center">
<span style="font-size:18px">TinyBERT<sub>6</sub>, Chinese</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">69.62</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">72.22</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">55.70</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">54.48</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">79.12</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">74.07</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">77.63</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">80.17</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">63.03/83.75</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">77.64</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">62.11</span>
</td>
</tr>
<tr>
<td style="text-align:center">
<span style="font-size:18px">RoFormerV2 Small</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">68.52</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">72.47</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">56.53</span>
</td>
<td style="text-align:center">
<span style="font-size:18px"><b>60.72</b></span>
</td>
<td style="text-align:center">
<span style="font-size:18px">76.37</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">72.95</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">75.00</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">81.07</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">62.97/83.64</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">67.66</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">59.41</span>
</td>
</tr>
<tr>
<td style="text-align:center">
<span style="font-size:18px">UER/Chinese-RoBERTa-L6-H768</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">67.09</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">70.13</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">56.54</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">60.48</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">77.49</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">72.00</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">72.04</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">77.33</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">53.74/75.52</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">76.73</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">54.40</span>
</td>
</tr>
<tr>
<td rowspan=1 align=center> 6L384H </td>
<td style="text-align:center">
<span style="font-size:18px">
<a href="https://bj.bcebos.com/paddlenlp/models/transformers/ernie_3.0/ernie_3.0_mini_zh.pdparams">
ERNIE 3.0-Mini-zh
</a>
</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">66.90</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">71.85</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">55.24</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">54.48</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">77.19</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">73.08</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">71.05</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">79.30</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">58.53/81.97</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">69.71</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">58.60</span>
</td>
</tr>
<tr>
<td rowspan=1 align=center> 4L768H </td>
<td style="text-align:center">
<span style="font-size:18px">HFL/RBT4, Chinese</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">67.42</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">72.41</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">56.50</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">58.95</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">77.34</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">70.78</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">71.05</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">78.23</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">59.30/81.93</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">73.18</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">56.45</span>
</td>
</tr>
<tr>
<td rowspan=1 align=center> 4L512H </td>
<td style="text-align:center">
<span style="font-size:18px">UER/Chinese-RoBERTa-Small</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">63.25</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">69.21</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">55.41</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">57.552</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">73.64</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">69.80</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">66.78</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">74.83</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">46.75/69.69</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">67.59</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">50.92</span>
</td>
</tr>
<tr>
<td rowspan=1 align=center> 4L384H </td>
<td style="text-align:center">
<span style="font-size:18px">
<a href="https://bj.bcebos.com/paddlenlp/models/transformers/ernie_3.0/ernie_3.0_micro_zh.pdparams">
ERNIE 3.0-Micro-zh
</a>
</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">64.21</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">71.15</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">55.05</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">53.83</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">74.81</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">70.41</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">69.08</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">76.50</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">53.77/77.82</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">62.26</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">55.53</span>
</td>
</tr>
<tr>
<td rowspan=2 align=center> 4L312H </td>
<td style="text-align:center">
<span style="font-size:18px">
<a href="https://bj.bcebos.com/paddlenlp/models/transformers/ernie_3.0/ernie_3.0_nano_zh.pdparams">
ERNIE 3.0-Nano-zh
</a>
</span>
</td>
<td style="text-align:center">
<span style="font-size:18px"><b>62.97</b></span>
</td>
<td style="text-align:center">
<span style="font-size:18px"><b>70.51</b></span>
</td>
<td style="text-align:center">
<span style="font-size:18px"><b>54.57</b></span>
</td>
<td style="text-align:center">
<span style="font-size:18px"><b>48.36</b></span>
</td>
<td style="text-align:center">
<span style="font-size:18px"><b>74.97</b></span>
</td>
<td style="text-align:center">
<span style="font-size:18px"><b>70.61</b></span>
</td>
<td style="text-align:center">
<span style="font-size:18px">68.75</span>
</td>
<td style="text-align:center">
<span style="font-size:18px"><b>75.93</b></span>
</td>
<td style="text-align:center">
<span style="font-size:18px"><b>52.00/76.35</b></span>
</td>
<td style="text-align:center">
<span style="font-size:18px"><b>58.91</b></span>
</td>
<td style="text-align:center">
<span style="font-size:18px"><b>55.11</b></span>
</td>
</tr>
<tr>
<td style="text-align:center">
<span style="font-size:18px">TinyBERT<sub>4</sub>, Chinese</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">60.82</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">69.07</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">54.02</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">39.71</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">73.94</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">69.59</span>
</td>
<td style="text-align:center">
<span style="font-size:18px"><b>70.07</b></span>
</td>
<td style="text-align:center">
<span style="font-size:18px">75.07</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">46.04/69.34</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">58.53</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">52.18</span>
</td>
</tr>
<tr>
<td rowspan=1 align=center> 4L256H </td>
<td style="text-align:center">
<span style="font-size:18px">UER/Chinese-RoBERTa-Mini</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">53.40</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">69.32</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">54.22</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">41.63</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">69.40</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">67.36</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">65.13</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">70.07</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">5.96/17.13</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">51.19</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">39.68</span>
</td>
</tr>
<tr>
<td rowspan=1 align=center> 3L1024H </td>
<td style="text-align:center">
<span style="font-size:18px">HFL/RBTL3, Chinese</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">66.63</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">71.11</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">56.14</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">59.56</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">76.41</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">71.29</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">69.74</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">76.93</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">58.50/80.90</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">71.03</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">55.56</span>
</td>
</tr>
<tr>
<td rowspan=1 align=center> 3L768H </td>
<td style="text-align:center">
<span style="font-size:18px">HFL/RBT3, Chinese</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">65.72</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">70.95</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">55.53</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">59.18</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">76.20</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">70.71</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">67.11</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">76.63</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">55.73/78.63</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">70.26</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">54.93</span>
</td>
</tr>
<tr>
<td rowspan=1 align=center> 2L128H </td>
<td style="text-align:center">
<span style="font-size:18px">UER/Chinese-RoBERTa-Tiny</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">44.45</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">69.02</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">51.47</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">20.28</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">59.95</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">57.73</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">63.82</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">67.43</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">3.08/14.33</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">23.57</span>
</td>
<td style="text-align:center">
<span style="font-size:18px">28.12</span>
</td>
</tr>
<tbody>
</table>
<br />
以下是本项目目录结构及说明:
```shell
.
├── run_seq_cls.py # 分类任务的微调脚本
├── run_token_cls.py # 序列标注任务的微调脚本
├── run_qa.py # 阅读理解任务的微调脚本
├── compress_seq_cls.py # 分类任务的压缩脚本
├── compress_token_cls.py # 序列标注任务的压缩脚本
├── compress_qa.py # 阅读理解任务的压缩脚本
├── config.yml # 压缩配置文件
├── infer.py # 支持 CLUE 分类、CLUE CMRC2018、MSRA_NER 任务的预测脚本
├── deploy # 部署目录
│ └── python
│ └── ernie_predictor.py
│ └── infer_cpu.py
│ └── infer_gpu.py
│ └── README.md
│ └── serving
│ └── seq_cls_rpc_client.py
│ └── seq_cls_service.py
│ └── seq_cls_config.yml
│ └── token_cls_rpc_client.py
│ └── token_cls_service.py
│ └── token_cls_config.yml
│ └── README.md
│ └── paddle2onnx
│ └── ernie_predictor.py
│ └── infer.py
│ └── README.md
└── README.md # 文档,本文件
```
<a name="微调"></a>
## 微调
ERNIE 3.0 发布的预训练模型还不能直接在下游任务上直接使用,需要使用具体任务上的数据对预训练模型进行微调。
使用 PaddleNLP 只需要一行代码可以拿到 ERNIE 3.0 系列模型,之后可以在自己的下游数据下进行微调,从而获得具体任务上效果更好的模型。
```python
from paddlenlp.transformers import *
tokenizer = AutoTokenizer.from_pretrained("ernie-3.0-medium-zh")
# 用于分类任务
seq_cls_model = AutoModelForSequenceClassification.from_pretrained("ernie-3.0-medium-zh")
# 用于序列标注任务
token_cls_model = AutoModelForTokenClassification.from_pretrained("ernie-3.0-medium-zh")
# 用于阅读理解任务
qa_model = AutoModelForQuestionAnswering.from_pretrained("ernie-3.0-medium-zh")
```
本项目提供了针对分类(包含文本分类、文本匹配、自然语言推理、代词消歧等任务)、序列标注、阅读理解三大场景下微调的示例脚本,可分别参考 `run_seq_cls.py` 、`run_token_cls.py`、`run_qa.py` 三个脚本,启动方式如下:
```shell
# 分类任务
python run_seq_cls.py --task_name tnews --model_name_or_path ernie-3.0-medium-zh --do_train
# 序列标注任务
python run_token_cls.py --task_name msra_ner --model_name_or_path ernie-3.0-medium-zh --do_train
# 阅读理解任务
python run_qa.py --model_name_or_path ernie-3.0-medium-zh --do_train
```
<a name="模型压缩"></a>
## 模型压缩
尽管 ERNIE 3.0 已提供了效果不错的 6 层、4 层轻量级模型可以微调后直接使用,但如果有模型部署上线的需求,则需要进一步压缩模型体积,可以使用这里提供的一套模型压缩方案及 API 对上一步微调后的模型进行压缩。
<a name="环境依赖"></a>
### 环境依赖
使用裁剪功能需要安装 paddleslim 包
```shell
pip install paddleslim
```
<a name="模型压缩API使用"></a>
### 模型压缩 API 使用
本项目基于 PaddleNLP 的 Trainer API 发布提供了模型压缩 API。压缩 API 支持用户对 ERNIE、BERT 等 Transformers 类下游任务微调模型进行裁剪、量化。用户只需要简单地调用 `compress()` 即可一键启动裁剪和量化,并自动保存压缩后的模型。
可以这样使用压缩 API (示例代码只提供了核心调用,如需跑通完整的例子可参考下方完整样例脚本):
```python
trainer = Trainer(
model=model,
args=training_args,
data_collator=data_collator,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
tokenizer=tokenizer)
output_dir = os.path.join(model_args.model_name_or_path, "compress")
compress_config = CompressConfig(quantization_config=PTQConfig(
algo_list=['hist', 'mse'], batch_size_list=[4, 8, 16]),
DynabertConfig(width_mul_ist=[3/4]))
trainer.compress(
output_dir,
pruning=True, # 开启裁剪
quantization=True, # 开启量化
compress_config=compress_config)
```
由于压缩 API 基于 Trainer,所以首先需要初始化一个 Trainer 实例,对于模型压缩来说必要传入的参数如下:
- `model`:ERNIE、BERT 等模型,是在下游任务中微调后的模型。以分类模型为例,可通过`AutoModelForSequenceClassification.from_pretrained(model_name_or_path)` 来获取
- `data_collator`:三类任务均可使用 PaddleNLP 预定义好的[DataCollator 类](../../paddlenlp/data/data_collator.py),`data_collator` 可对数据进行 `Pad` 等操作。使用方法参考本项目中代码即可
- `train_dataset`:裁剪训练需要使用的训练集
- `eval_dataset`:裁剪训练使用的评估集,也是量化使用的校准数据
- `tokenizer`:模型`model`对应的 `tokenizer`,可使用 `AutoTokenizer.from_pretrained(model_name_or_path)` 来获取
然后可以直接调用 `compress` 启动压缩,其中 `compress` 的参数释义如下:
- `output_dir`:裁剪、量化后的模型保存目录
- `pruning`:是否裁剪,默认为`True`
- `quantization`:是否量化,默认为 `True`
- `compress_config`:压缩配置,需要分别传入裁剪和量化的配置实例。目前裁剪和量化分别仅支持`DynabertConfig`和`PTQConfig`类。当默认参数不满足需求时,可通过传入参数对压缩过程进行特殊配置:
其中,`DynabertConfig`中可以传的参数有:
- `width_mult_list`:裁剪宽度保留的比例list,对 6 层模型推荐 `3/4` ,对 12 层模型推荐 `2/3`,表示对 `q`、`k`、`v` 以及 `ffn` 权重宽度的保留比例。默认是 `[3/4]`
- `output_filename_prefix`:裁剪导出模型的文件名前缀,默认是`"float32"`
`PTQConfig`中可以传的参数有:
- `algo_list`:量化策略列表,目前支持 `KL`, `abs_max`, `min_max`, `avg`, `hist`和`mse`,不同的策略计算量化比例因子的方法不同。建议传入多种策略,可批量得到由多种策略产出的多个量化模型,从中选择最优模型。推荐`hist`, `mse`, `KL`,默认是`["hist"]`
- `batch_size_list`:校准样本数,默认是 `[4]`。并非越大越好,也是一个超参数,建议传入多种校准样本数,可从多个量化模型中选择最优模型。
- `input_dir`:待量化模型的目录。如果是 `None`,当不启用裁剪时,表示待量化的模型是 `Trainer` 初始化的模型;当启用裁剪时,表示待量化的模型是裁剪后导出的模型。默认是`None`
- `input_filename_prefix`:待量化模型文件名前缀,默认是 `"float32"`
- `output_filename_prefix`:导出的量化模型文件名后缀,默认是`"int8"`
本项目还提供了压缩 API 在分类(包含文本分类、文本匹配、自然语言推理、代词消歧等任务)、序列标注、阅读理解三大场景下的使用样例,可以分别参考 `compress_seq_cls.py` 、`compress_token_cls.py`、`compress_qa.py`,启动方式如下:
```shell
# --model_name_or_path 参数传入的是上面微调过程后得到的模型所在目录,压缩后的模型也会在该目录下
# 分类任务
python compress_seq_cls.py --dataset "clue tnews" --model_name_or_path best_models/TNEWS --output_dir ./
# 序列标注任务
python compress_token_cls.py --dataset "msra_ner" --model_name_or_path best_models/MSRA_NER --output_dir ./
# 阅读理解任务
python compress_seq_cls.py --dataset "clue cmrc2018" --model_name_or_path best_models/CMRC2018 --output_dir ./
```
一行代码验证上面模型压缩后模型的精度:
```shell
# 原模型
python infer.py --task_name tnews --model_path best_models/TNEWS/compress/inference/infer --use_trt
# 裁剪后
python infer.py --task_name tnews --model_path best_models/TNEWS/compress/0.75/float --use_trt
# 量化后
python infer.py --task_name tnews --model_path best_models/TNEWS/compress/0.75/hist16/int8 --use_trt --precision int8
```
其中 --model_path 参数需要传入静态图模型的路径和前缀名。
**压缩 API 使用 TIPS:**
1. 模型压缩主要用于加速推理部署,因此压缩后的模型都是静态图模型,不能再通过 `from_pretrained()` API 导入继续训练。
2. 压缩 API `compress()` 默认会启动裁剪和量化,但用户也可以通过在 `compress()` 中设置 pruning=False 或者 quantization=False 来关掉裁剪或者量化过程。目前裁剪策略有额外的训练的过程,需要下游任务的数据,其训练时间视下游任务数据量而定,且和微调的训练时间是一个量级。量化则不需要额外的训练,更快,量化的加速比比裁剪更明显,但是单独量化精度下降可能也更多;
3. 裁剪类似蒸馏过程,方便起见,可以直接使用微调时的超参。如果想要进一步提升精度,可以对 `batch_size`、`learning_rate`、`epoch` 等超参进行 Grid Search;
<a name="压缩效果"></a>
### 压缩效果
<a name="精度测试"></a>
#### 精度测试
本案例中我们对 ERNIE 3.0-Medium 模型在三类任务上微调后的模型使用压缩 API 进行压缩。压缩后精度如下:
| Model | AVG | AFQMC | TNEWS | IFLYTEK | CMNLI | OCNLI | CLUEWSC2020 | CSL | CMRC2018 | MSRA_NER |
| ------------------------------- | ----- | ----- | ----- | ------- | ----- | ----- | ----------- | ----- | ----------- | ----------------- |
| ERNIE 3.0-Medium | 74.87 | 75.35 | 57.45 | 60.18 | 81.16 | 77.19 | 80.59 | 81.93 | 66.95/87.15 | 92.65/93.43/93.04 |
| ERNIE 3.0-Medium+FP16 | 74.87 | 75.32 | 57.45 | 60.22 | 81.16 | 77.22 | 80.59 | 81.90 | 66.95/87.16 | 92.65/93.45/93.05 |
| ERNIE 3.0-Medium+裁剪+FP32 | 74.70 | 75.14 | 57.31 | 60.29 | 81.25 | 77.46 | 79.93 | 81.70 | 65.92/86.43 | 93.10/93.43/93.27 |
| ERNIE 3.0-Medium+裁剪+FP16 | 74.71 | 75.21 | 57.27 | 60.29 | 81.24 | 77.56 | 79.93 | 81.73 | 65.89/86.44 | 93.10/93.43/93.27 |
| ERNIE 3.0-Medium+裁剪+量化+INT8 | 74.44 | 75.02 | 57.26 | 60.37 | 81.03 | 77.25 | 77.96 | 81.67 | 66.17/86.55 | 93.17/93.23/93.20 |
| ERNIE 3.0-Medium+量化+INT8 | 74.10 | 74.67 | 56.99 | 59.91 | 81.03 | 75.05 | 78.62 | 81.60 | 66.32/86.82 | 93.10/92.90/92.70 |
**评价指标说明:** 其中 CLUE 分类任务(AFQMC 语义相似度、TNEWS 文本分类、IFLYTEK 长文本分类、CMNLI 自然语言推理、OCNLI 自然语言推理、CLUEWSC2020 代词消歧、CSL 论文关键词识别)的评价指标是 Accuracy,阅读理解任务 CLUE CMRC2018 的评价指标是 EM (Exact Match) / F1-Score,计算平均值时取 EM,序列标注任务 MSRA_NER 的评价指标是 Precision/Recall/F1-Score,计算平均值时取 F1-Score。
由表可知,`ERNIE 3.0-Medium` 模型经过裁剪和量化后,精度平均下降 0.46,其中裁剪后下降了 0.17,单独量化精度平均下降 0.77。
<a name="性能测试"></a>
#### 性能测试
性能测试的配置如下:
1. 数据集:TNEWS(文本分类)、MSRA_NER(序列标注)、CLUE CMRC2018(阅读理解)
2. 计算卡:T4、CUDA11.2、CuDNN8.2
3. CPU 信息:Intel(R) Xeon(R) Gold 6271C CPU
4. PaddlePaddle 版本:2.3
5. PaddleNLP 版本:2.3
6. 性能数据单位是 QPS。QPS 测试方法:固定 batch size 为 32,测试运行时间 total_time,计算 QPS = total_samples / total_time
7. 精度数据单位:文本分类是 Accuracy,序列标注是 F1-Score,阅读理解是 EM (Exact Match)
<a name="CPU性能"></a>
##### CPU 性能
测试环境及说明如上,测试 CPU 性能时,线程数设置为12。
| | TNEWS 性能 | TNEWS 精度 | MSRA_NER 性能 | MSRA_NER 精度 | CMRC2018 性能 | CMRC2018 精度 |
| -------------------------- | ------------ | ------------ | ------------- | ------------- | ------------- | ------------- |
| ERNIE 3.0-Medium+FP32 | 311.95(1.0X) | 57.45 | 90.91(1.0x) | 93.04 | 33.74(1.0x) | 66.95 |
| ERNIE 3.0-Medium+INT8 | 600.35(1.9x) | 56.57(-0.88) | 141.00(1.6x) | 92.64(-0.40) | 56.51(1.7x) | 66.23(-0.72) |
| ERNIE 3.0-Medium+裁剪+FP32 | 408.65(1.3x) | 57.31(-0.14) | 122.13(1.3x) | 93.27(+0.23) | 48.47(1.4x) | 65.55(-1.40) |
| ERNIE 3.0-Medium+裁剪+INT8 | 704.42(2.3x) | 56.69(-0.76) | 215.58(2.4x) | 92.39(-0.65) | 75.23(2.2x) | 63.47(-3.48) |
三类任务(分类、序列标注、阅读理解)经过相同压缩过程后,加速比达到 2.3 左右。
<a name="GPU性能"></a>
##### GPU 性能
| | TNEWS 性能 | TNEWS 精度 | MSRA_NER 性能 | MSRA_NER 精度 | CMRC2018 性能 | CMRC2018 精度 |
| -------------------------- | ------------- | ------------ | ------------- | ------------- | ------------- | ------------- |
| ERNIE 3.0-Medium+FP32 | 1123.85(1.0x) | 57.45 | 366.75(1.0x) | 93.04 | 146.84(1.0x) | 66.95 |
| ERNIE 3.0-Medium+FP16 | 2672.41(2.4x) | 57.45(0.00) | 840.11(2.3x) | 93.05(0.01) | 303.43(2.1x) | 66.95(0.00) |
| ERNIE 3.0-Medium+INT8 | 3226.26(2.9x) | 56.99(-0.46) | 889.33(2.4x) | 92.70(-0.34) | 348.84(2.4x) | 66.32(-0.63 |
| ERNIE 3.0-Medium+裁剪+FP32 | 1424.01(1.3x) | 57.31(-0.14) | 454.27(1.2x) | 93.27(+0.23) | 183.77(1.3x) | 65.92(-1.03) |
| ERNIE 3.0-Medium+裁剪+FP16 | 3577.62(3.2x) | 57.27(-0.18) | 1138.77(3.1x) | 93.27(+0.23) | 445.71(3.0x) | 65.89(-1.06) |
| ERNIE 3.0-Medium+裁剪+INT8 | 3635.48(3.2x) | 57.26(-0.19) | 1105.26(3.0x) | 93.20(+0.16) | 444.27(3.0x) | 66.17(-0.78) |
三类任务(分类、序列标注、阅读理解)经过裁剪 + 量化后加速比均达到 3 倍左右,所有任务上平均精度损失可控制在 0.5 以内(0.46)。
<a name="使用FasterTokenizer加速"></a>
### 使用 FasterTokenizer 加速
FasterTokenizer 是飞桨提供的速度领先的文本处理算子库,集成了 Google 于 2021 年底发布的 LinMaxMatch 算法,该算法引入 Aho-Corasick 将 WordPiece 的时间复杂度从 O(N<sup>2</sup>) 优化到 O(N),已在 Google 搜索业务中大规模上线。FasterTokenizer 速度显著领先,且呈现 batch_size 越大,优势越突出。例如,设置 batch_size = 64 时,FasterTokenizer 切词速度比 HuggingFace 快 28 倍。
在 ERNIE 3.0 轻量级模型裁剪、量化基础上,当设置切词线程数为 4 时,使用 FasterTokenizer 在 NVIDIA Tesla T4 环境下在 IFLYTEK (长文本分类数据集,最大序列长度为 128)数据集上性能提升了 2.39 倍,相比 BERT-Base 性能提升了 7.09 倍,在 Intel(R) Xeon(R) Gold 6271C CPU @ 2.60GHz、线程数为 8 的情况下性能提升了 1.27 倍,相比 BERT-Base 性能提升了 5.13 倍。加速效果如下图所示:
<table>
<tr>
<td><a><img src="https://user-images.githubusercontent.com/26483581/175452331-bc5ff646-90ee-4377-85a5-d5b073a8e7f9.png"></a></td>
<td><a><img src="https://user-images.githubusercontent.com/26483581/175452337-e0eff0d3-ed5f-42e7-b06b-caad61f37978.png"></a></td>
</tr>
</table>
使用 FasterTokenizer 的方式非常简单,在安装 faster_tokenizer 包之后,仅需在 tokenizer 实例化时直接传入 `use_faster=True` 即可。目前已在 Linux 系统下支持 BERT、ERNIE、TinyBERT 等模型。
安装 faster_tokenizer 包的命令:
```shell
pip install faster_tokenizer
```
如需设置切词线程数,需要运行前先设置环境变量 `OMP_NUM_THREADS` :
```shell
# 设置切词线程数为 4
export OMP_NUM_THREADS=4
```
调用 `from_pretrained` 时只需轻松传入一个参数 `use_faster=True`:
```python
from paddlenlp.transformers import AutoTokenizer
AutoTokenizer.from_pretrained("ernie-3.0-medium-zh", use_faster=True)
```
<a name="部署"></a>
## 部署
我们为 ERNIE 3.0 提供了多种部署方案,可以满足不同场景下的部署需求,请根据实际情况进行选择。
<p align="center">
<img width="700" alt="image" src="https://user-images.githubusercontent.com/26483581/175260618-610a160c-270c-469a-842c-96871243c4ed.png">
</p>
<a name="Python部署"></a>
### Python 部署
Python部署请参考:[Python部署指南](./deploy/python/README.md)
<a name="服务化部署"></a>
### 服务化部署
- [Triton Inference Server服务化部署指南](./deploy/triton/README.md)
- [Paddle Serving服务化部署指南](./deploy/serving/README.md)
<a name="Paddle2ONNX部署"></a>
### Paddle2ONNX 部署
ONNX 导出及 ONNXRuntime 部署请参考:[ONNX导出及ONNXRuntime部署指南](./deploy/paddle2onnx/README.md)
### Paddle Lite 移动端部署
即将支持,敬请期待
<a name="参考文献"></a>
## Notebook教程
- [【快速上手ERNIE 3.0】中文情感分析实战](https://aistudio.baidu.com/aistudio/projectdetail/3955163)
- [【快速上手ERNIE 3.0】法律文本多标签分类实战](https://aistudio.baidu.com/aistudio/projectdetail/3996601)
- [【快速上手ERNIE 3.0】中文语义匹配实战](https://aistudio.baidu.com/aistudio/projectdetail/3986803)
- [【快速上手ERNIE 3.0】MSRA序列标注实战](https://aistudio.baidu.com/aistudio/projectdetail/3989073)
- [【快速上手ERNIE 3.0】机器阅读理解实战](https://aistudio.baidu.com/aistudio/projectdetail/2017189)
- [【快速上手ERNIE 3.0】对话意图识别](https://aistudio.baidu.com/aistudio/projectdetail/2017202?contributionType=1)
## 参考文献
* Sun Y, Wang S, Feng S, et al. ERNIE 3.0: Large-scale Knowledge Enhanced Pre-training for Language Understanding and Generation[J]. arXiv preprint arXiv:2107.02137, 2021.
* Su W, Chen X, Feng S, et al. ERNIE-Tiny: A Progressive Distillation Framework for Pretrained Transformer Compression[J]. arXiv preprint arXiv:2106.02241, 2021.
* Wang S, Sun Y, Xiang Y, et al. ERNIE 3.0 Titan: Exploring Larger-scale Knowledge Enhanced Pre-training for Language Understanding and Generation[J]. arXiv preprint arXiv:2112.12731, 2021. |