Jyotiyadav commited on
Commit
11bd3b3
1 Parent(s): edcbc47

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +98 -0
README.md ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-nc-sa-4.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - dataset
7
+ metrics:
8
+ - precision
9
+ - recall
10
+ - f1
11
+ - accuracy
12
+ model-index:
13
+ - name: sougemi_model
14
+ results:
15
+ - task:
16
+ name: Token Classification
17
+ type: token-classification
18
+ dataset:
19
+ name: dataset
20
+ type: dataset
21
+ config: discharge
22
+ split: test
23
+ args: discharge
24
+ metrics:
25
+ - name: Precision
26
+ type: precision
27
+ value: 0.845360824742268
28
+ - name: Recall
29
+ type: recall
30
+ value: 0.8913043478260869
31
+ - name: F1
32
+ type: f1
33
+ value: 0.8677248677248677
34
+ - name: Accuracy
35
+ type: accuracy
36
+ value: 0.9533678756476683
37
+ ---
38
+
39
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
40
+ should probably proofread and complete it, then remove this comment. -->
41
+
42
+ # sougemi_model
43
+
44
+ This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the dataset dataset.
45
+ It achieves the following results on the evaluation set:
46
+ - Loss: 0.1812
47
+ - Precision: 0.8454
48
+ - Recall: 0.8913
49
+ - F1: 0.8677
50
+ - Accuracy: 0.9534
51
+
52
+ ## Model description
53
+
54
+ More information needed
55
+
56
+ ## Intended uses & limitations
57
+
58
+ More information needed
59
+
60
+ ## Training and evaluation data
61
+
62
+ More information needed
63
+
64
+ ## Training procedure
65
+
66
+ ### Training hyperparameters
67
+
68
+ The following hyperparameters were used during training:
69
+ - learning_rate: 1e-05
70
+ - train_batch_size: 2
71
+ - eval_batch_size: 2
72
+ - seed: 42
73
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
74
+ - lr_scheduler_type: linear
75
+ - training_steps: 1000
76
+
77
+ ### Training results
78
+
79
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
80
+ |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
81
+ | No log | 33.33 | 100 | 0.7803 | 0.8966 | 0.8478 | 0.8715 | 0.9663 |
82
+ | No log | 66.67 | 200 | 0.3016 | 0.8696 | 0.8696 | 0.8696 | 0.9767 |
83
+ | No log | 100.0 | 300 | 0.1623 | 0.9130 | 0.9130 | 0.9130 | 0.9819 |
84
+ | No log | 133.33 | 400 | 0.1680 | 0.8454 | 0.8913 | 0.8677 | 0.9637 |
85
+ | 0.5801 | 166.67 | 500 | 0.1812 | 0.8454 | 0.8913 | 0.8677 | 0.9534 |
86
+ | 0.5801 | 200.0 | 600 | 0.1231 | 0.8947 | 0.9239 | 0.9091 | 0.9715 |
87
+ | 0.5801 | 233.33 | 700 | 0.1363 | 0.8617 | 0.8804 | 0.8710 | 0.9663 |
88
+ | 0.5801 | 266.67 | 800 | 0.1949 | 0.8333 | 0.8696 | 0.8511 | 0.9508 |
89
+ | 0.5801 | 300.0 | 900 | 0.1749 | 0.8163 | 0.8696 | 0.8421 | 0.9534 |
90
+ | 0.0607 | 333.33 | 1000 | 0.1817 | 0.8163 | 0.8696 | 0.8421 | 0.9534 |
91
+
92
+
93
+ ### Framework versions
94
+
95
+ - Transformers 4.26.0.dev0
96
+ - Pytorch 1.13.0+cu116
97
+ - Datasets 2.8.0
98
+ - Tokenizers 0.13.2