import gradio as gr from tensorflow.keras.models import load_model import numpy as np import tensorflow as tf model = load_model("skin_cancer_detection_model.h5") def predict_image(image): img = tf.image.resize(image, (224, 224)) img = np.expand_dims(img, axis=0) img = img / 255.0 prediction = model.predict(img) predicted_class = np.argmax(prediction, axis=1)[0] class_names = ['akiec', 'bcc', 'bkl', 'df', 'nv', 'vasc', 'mel'] disease_info = { 'akiec': "Actinic Keratoses and Intraepithelial Carcinoma (pre-cancerous lesion)", 'bcc': "Basal Cell Carcinoma (a common type of skin cancer)", 'bkl': "Benign Keratosis (non-cancerous lesion)", 'df': "Dermatofibroma (benign skin lesion)", 'nv': "Melanocytic Nevus (a common mole)", 'vasc': "Vascular Lesions (benign lesion of blood vessels)", 'mel': "Melanoma (most dangerous type of skin cancer)" } return f"{class_names[predicted_class]}: {disease_info[class_names[predicted_class]]}" # Gradio Interface iface = gr.Interface(fn=predict_image, inputs="image", outputs="text") iface.launch()