sy commited on
Commit
e1b1ba8
·
1 Parent(s): 3bdd852

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +66 -190
README.md CHANGED
@@ -5,199 +5,75 @@ base_model: sysong11/dapt-kogpt
5
 
6
  # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
-
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
 
70
  ## How to Get Started with the Model
71
 
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
200
-
201
 
202
  ### Framework versions
203
 
 
5
 
6
  # Model Card for Model ID
7
 
8
+ This repo contains a low-rank adapter for [domain-adapted KoGPT](https://huggingface.co/sysong11/dapt-kogpt) fit on [a small supervised tuning dataset for summarization](https://huggingface.co/datasets/sysong11/sum_train_rev).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
 
10
  ## How to Get Started with the Model
11
 
12
+ ```python
13
+ import json
14
+ from random import randrange
15
+ import torch
16
+
17
+ from peft import LoraConfig, get_peft_model
18
+ from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
19
+ from peft import PeftModel
20
+
21
+ model1 = AutoModelForCausalLM.from_pretrained(
22
+ "sysong11/dapt-kogpt", torch_dtype="auto", device_map="auto"
23
+ )
24
+
25
+
26
+ lora_path = "sysong11/dapt-kogpt-orca-sum-adapter"
27
+ model2 = PeftModel.from_pretrained(model1, lora_path, device_map="auto")
28
+ tokenizer = AutoTokenizer.from_pretrained(lora_path)
29
+
30
+
31
+ test_data = []
32
+ with open("./datasets/test.json", "rb") as f:
33
+ for line in f:
34
+ test_data.append(json.loads(line))
35
+
36
+
37
+ prompt_template = """\
38
+ <|im_start|>system
39
+ {system_prompt}<|im_end|>
40
+ <|im_start|>user
41
+ {prompt}<|im_end|>
42
+ <|im_start|>assistant"""
43
+
44
+ msg = "Q:다음 문서를 요약 하세요, Context:{context}"
45
+
46
+ ix = randrange(len(test_data))
47
+ print(ix)
48
+ datapoint = test_data[ix]
49
+ ref = test_data[ix]["summary_text"]
50
+ system_prompt = "You are an AI assistant. User will you give you a task. Your goal is to complete the task as faithfully as you can."
51
+ tokens = tokenizer.encode(
52
+ prompt_template.format(
53
+ system_prompt=system_prompt,
54
+ prompt=msg.format(context=datapoint["original_text"]),
55
+ ),
56
+ return_tensors="pt",
57
+ ).to(device="cuda", non_blocking=True)
58
+
59
+ gen_tokens = model2.generate(
60
+ input_ids=tokens,
61
+ do_sample=False,
62
+ temperature=0.5,
63
+ max_length=1024,
64
+ pad_token_id=63999,
65
+ eos_token_id=63999,
66
+ )
67
+ inputs = tokenizer.batch_decode([gen_tokens[0][: tokens[0].shape[0]]])[0]
68
+ generated = tokenizer.batch_decode([gen_tokens[0][tokens[0].shape[0] :]])[0].replace(
69
+ "<|im_end|>", ""
70
+ )
71
+ print(inputs)
72
+ print("generated:")
73
+ print(generated)
74
+
75
+
76
+ ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77
 
78
  ### Framework versions
79