mjamei kamalkraj commited on
Commit
96217f7
0 Parent(s):

Duplicate from microsoft/biogpt

Browse files

Co-authored-by: Kamal Raj Kanakarajan <kamalkraj@users.noreply.huggingface.co>

Files changed (6) hide show
  1. .gitattributes +34 -0
  2. README.md +87 -0
  3. config.json +25 -0
  4. merges.txt +0 -0
  5. pytorch_model.bin +3 -0
  6. vocab.json +0 -0
.gitattributes ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tflite filter=lfs diff=lfs merge=lfs -text
29
+ *.tgz filter=lfs diff=lfs merge=lfs -text
30
+ *.wasm filter=lfs diff=lfs merge=lfs -text
31
+ *.xz filter=lfs diff=lfs merge=lfs -text
32
+ *.zip filter=lfs diff=lfs merge=lfs -text
33
+ *.zst filter=lfs diff=lfs merge=lfs -text
34
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: en
3
+ license: mit
4
+ widget:
5
+ - text: COVID-19 is
6
+ duplicated_from: microsoft/biogpt
7
+ ---
8
+
9
+ ## BioGPT
10
+
11
+ Pre-trained language models have attracted increasing attention in the biomedical domain, inspired by their great success in the general natural language domain. Among the two main branches of pre-trained language models in the general language domain, i.e. BERT (and its variants) and GPT (and its variants), the first one has been extensively studied in the biomedical domain, such as BioBERT and PubMedBERT. While they have achieved great success on a variety of discriminative downstream biomedical tasks, the lack of generation ability constrains their application scope. In this paper, we propose BioGPT, a domain-specific generative Transformer language model pre-trained on large-scale biomedical literature. We evaluate BioGPT on six biomedical natural language processing tasks and demonstrate that our model outperforms previous models on most tasks. Especially, we get 44.98%, 38.42% and 40.76% F1 score on BC5CDR, KD-DTI and DDI end-to-end relation extraction tasks, respectively, and 78.2% accuracy on PubMedQA, creating a new record. Our case study on text generation further demonstrates the advantage of BioGPT on biomedical literature to generate fluent descriptions for biomedical terms.
12
+
13
+ You can use this model directly with a pipeline for text generation. Since the generation relies on some randomness, we
14
+ set a seed for reproducibility:
15
+
16
+ ```python
17
+ >>> from transformers import pipeline, set_seed
18
+ >>> from transformers import BioGptTokenizer, BioGptForCausalLM
19
+ >>> model = BioGptForCausalLM.from_pretrained("microsoft/biogpt")
20
+ >>> tokenizer = BioGptTokenizer.from_pretrained("microsoft/biogpt")
21
+ >>> generator = pipeline('text-generation', model=model, tokenizer=tokenizer)
22
+ >>> set_seed(42)
23
+ >>> generator("COVID-19 is", max_length=20, num_return_sequences=5, do_sample=True)
24
+ [{'generated_text': 'COVID-19 is a disease that spreads worldwide and is currently found in a growing proportion of the population'},
25
+ {'generated_text': 'COVID-19 is one of the largest viral epidemics in the world.'},
26
+ {'generated_text': 'COVID-19 is a common condition affecting an estimated 1.1 million people in the United States alone.'},
27
+ {'generated_text': 'COVID-19 is a pandemic, the incidence has been increased in a manner similar to that in other'},
28
+ {'generated_text': 'COVID-19 is transmitted via droplets, air-borne, or airborne transmission.'}]
29
+ ```
30
+
31
+ Here is how to use this model to get the features of a given text in PyTorch:
32
+
33
+ ```python
34
+ from transformers import BioGptTokenizer, BioGptForCausalLM
35
+ tokenizer = BioGptTokenizer.from_pretrained("microsoft/biogpt")
36
+ model = BioGptForCausalLM.from_pretrained("microsoft/biogpt")
37
+ text = "Replace me by any text you'd like."
38
+ encoded_input = tokenizer(text, return_tensors='pt')
39
+ output = model(**encoded_input)
40
+ ```
41
+
42
+ Beam-search decoding:
43
+
44
+ ```python
45
+ import torch
46
+ from transformers import BioGptTokenizer, BioGptForCausalLM, set_seed
47
+
48
+ tokenizer = BioGptTokenizer.from_pretrained("microsoft/biogpt")
49
+ model = BioGptForCausalLM.from_pretrained("microsoft/biogpt")
50
+
51
+ sentence = "COVID-19 is"
52
+ inputs = tokenizer(sentence, return_tensors="pt")
53
+
54
+ set_seed(42)
55
+
56
+ with torch.no_grad():
57
+ beam_output = model.generate(**inputs,
58
+ min_length=100,
59
+ max_length=1024,
60
+ num_beams=5,
61
+ early_stopping=True
62
+ )
63
+ tokenizer.decode(beam_output[0], skip_special_tokens=True)
64
+ 'COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK), and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and more than 800,000 deaths.'
65
+ ```
66
+
67
+ ## Citation
68
+
69
+ If you find BioGPT useful in your research, please cite the following paper:
70
+
71
+ ```latex
72
+ @article{10.1093/bib/bbac409,
73
+ author = {Luo, Renqian and Sun, Liai and Xia, Yingce and Qin, Tao and Zhang, Sheng and Poon, Hoifung and Liu, Tie-Yan},
74
+ title = "{BioGPT: generative pre-trained transformer for biomedical text generation and mining}",
75
+ journal = {Briefings in Bioinformatics},
76
+ volume = {23},
77
+ number = {6},
78
+ year = {2022},
79
+ month = {09},
80
+ abstract = "{Pre-trained language models have attracted increasing attention in the biomedical domain, inspired by their great success in the general natural language domain. Among the two main branches of pre-trained language models in the general language domain, i.e. BERT (and its variants) and GPT (and its variants), the first one has been extensively studied in the biomedical domain, such as BioBERT and PubMedBERT. While they have achieved great success on a variety of discriminative downstream biomedical tasks, the lack of generation ability constrains their application scope. In this paper, we propose BioGPT, a domain-specific generative Transformer language model pre-trained on large-scale biomedical literature. We evaluate BioGPT on six biomedical natural language processing tasks and demonstrate that our model outperforms previous models on most tasks. Especially, we get 44.98\%, 38.42\% and 40.76\% F1 score on BC5CDR, KD-DTI and DDI end-to-end relation extraction tasks, respectively, and 78.2\% accuracy on PubMedQA, creating a new record. Our case study on text generation further demonstrates the advantage of BioGPT on biomedical literature to generate fluent descriptions for biomedical terms.}",
81
+ issn = {1477-4054},
82
+ doi = {10.1093/bib/bbac409},
83
+ url = {https://doi.org/10.1093/bib/bbac409},
84
+ note = {bbac409},
85
+ eprint = {https://academic.oup.com/bib/article-pdf/23/6/bbac409/47144271/bbac409.pdf},
86
+ }
87
+ ```
config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "activation_dropout": 0.0,
3
+ "architectures": [
4
+ "BioGptForCausalLM"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 1024,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 4096,
14
+ "layer_norm_eps": 1e-12,
15
+ "layerdrop": 0.0,
16
+ "max_position_embeddings": 1024,
17
+ "model_type": "biogpt",
18
+ "num_attention_heads": 16,
19
+ "num_hidden_layers": 24,
20
+ "pad_token_id": 1,
21
+ "scale_embedding": true,
22
+ "transformers_version": "4.25.0.dev0",
23
+ "use_cache": true,
24
+ "vocab_size": 42384
25
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:11b9d608003652a84595aecee376d5c09156779228639b0ecb147cafb43cd409
3
+ size 1560781537
vocab.json ADDED
The diff for this file is too large to render. See raw diff