File size: 3,492 Bytes
fdbe4d7
51e50fa
 
 
 
 
 
 
fdbe4d7
51e50fa
 
3226321
 
 
 
 
 
fdbe4d7
 
 
 
3226321
 
fdbe4d7
 
 
 
 
 
 
 
 
 
3226321
 
 
 
fdbe4d7
 
 
 
 
 
 
 
 
 
 
 
 
 
3226321
fdbe4d7
3226321
fdbe4d7
3226321
 
 
fdbe4d7
3226321
 
fdbe4d7
3226321
 
 
fdbe4d7
3226321
 
fdbe4d7
3226321
 
 
fdbe4d7
3226321
 
 
 
 
fdbe4d7
 
 
3226321
fdbe4d7
3226321
fdbe4d7
 
3226321
fdbe4d7
3226321
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fdbe4d7
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
---
base_model:
- google/mt5-small
datasets:
- syubraj/roman2nepali-transliteration
language:
- ne
- en
library_name: transformers
license: apache-2.0
pipeline_tag: translation
tags:
- nepali
- roman english
- translation
- transliteration
new_version: syubraj/romaneng2nep
---

# Model Card for Model ID

Model Trained for 8500 steps on <110k dataset.





### Model Description

<!-- Provide a longer summary of what this model is. -->

This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.

- **Model type:** (google/mt5-small)
- **Language(s) (NLP, Nepali, English):** 
- **License:** [Apache license 2.0]
- **Finetuned from model [google/mt5-small]:** 

### Model Sources [optional]

<!-- Provide the basic links for the model. -->

- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]


## How to Get Started with the Model

Use the code below to get started with the model.

```Python

from transformers import AutoTokenizer, MT5ForConditionalGeneration

checkpoint = "syubraj/RomanEng2Nep-v2"
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = MT5ForConditionalGeneration.from_pretrained(checkpoint)

# Set max sequence length
max_seq_len = 20

def translate(text):
    # Tokenize the input text with a max length of 20
    inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=max_seq_len)

    # Generate translation
    translated = model.generate(**inputs)

    # Decode the translated tokens back to text
    translated_text = tokenizer.decode(translated[0], skip_special_tokens=True)
    return translated_text

# Example usage
source_text = "timilai kasto cha?"  # Example Romanized Nepali text
translated_text = translate(source_text)
print(f"Translated Text: {translated_text}")
```



### Training Data

[syubraj/roman2nepali-transliteration](https://huggingface.co/datasets/syubraj/roman2nepali-transliteration)


#### Training Hyperparameters

- **Training regime:**
```Python
training_args = Seq2SeqTrainingArguments(
    output_dir="/content/drive/MyDrive/romaneng2nep_v2/",
    eval_strategy="steps",
    learning_rate=2e-5,
    per_device_train_batch_size=16,
    per_device_eval_batch_size=8,
    weight_decay=0.01,
    save_total_limit=3,
    num_train_epochs=2,
    predict_with_generate=True,
)
```

## Training and Validation Metrics

| Step | Training Loss | Validation Loss | Gen Len |
|------|---------------|-----------------|---------|
| 500  | 21.636200     | 9.776628        | 2.001900 |
| 1000 | 10.103400     | 6.105016        | 2.077900 |
| 1500 | 6.830800      | 5.081259        | 3.811600 |
| 2000 | 6.003100      | 4.702793        | 4.237300 |
| 2500 | 5.690200      | 4.469123        | 4.700000 |
| 3000 | 5.443100      | 4.274406        | 4.808300 |
| 3500 | 5.265300      | 4.121417        | 4.749400 |
| 4000 | 5.128500      | 3.989708        | 4.782300 |
| 4500 | 5.007200      | 3.885391        | 4.805100 |
| 5000 | 4.909600      | 3.787640        | 4.874800 |
| 5500 | 4.836000      | 3.715750        | 4.855500 |
| 6000 | 4.733000      | 3.640963        | 4.962000 |
| 6500 | 4.673500      | 3.587330        | 5.011600 |
| 7000 | 4.623800      | 3.531883        | 5.068300 |
| 7500 | 4.567400      | 3.481622        | 5.108500 |
| 8000 | 4.523200      | 3.445404        | 5.092700 |
| 8500 | 4.464000      | 3.413630        | 5.132700 |