File size: 4,909 Bytes
fdbe4d7
51e50fa
 
 
 
 
 
 
fdbe4d7
51e50fa
 
3226321
 
 
 
 
0059542
fdbe4d7
 
 
 
584bd36
 
bc5d744
 
 
3226321
fdbe4d7
 
 
 
 
 
 
 
 
 
f7a96e9
87ea540
3226321
a7c0085
fdbe4d7
 
 
 
 
 
3226321
fdbe4d7
3226321
fdbe4d7
3226321
 
 
fdbe4d7
3226321
 
fdbe4d7
3226321
 
 
fdbe4d7
3226321
 
fdbe4d7
3226321
 
 
fdbe4d7
3226321
69ce82b
3226321
 
 
fdbe4d7
 
 
3226321
fdbe4d7
3226321
fdbe4d7
 
3226321
fdbe4d7
3226321
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a282be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0059542
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
---
base_model:
- google/mt5-small
datasets:
- syubraj/roman2nepali-transliteration
language:
- ne
- en
library_name: transformers
license: apache-2.0
pipeline_tag: translation
tags:
- nepali
- roman english
- translation
- transliteration
new_version: syubraj/romaneng2nep_v2
---

# Model Card for Model ID

Due to compute issues, The model has been trained on multiple iterations:

1. Model Trained for 8500 steps on [0 : 5%] of the dataset.
2. Model continued from 8500 upto 16500 steps on [5% : 20%] of the dataset
3. Model continued from 16500 upto 22000 steps on [20% : 40%] of the dataset





### Model Description

<!-- Provide a longer summary of what this model is. -->

This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.

- **Model type:** (Translation)
- **Language(s) (NLP):**  Nepali, English
- **License:** [Apache license 2.0]
- **Finetuned from model :** [google/mt5-small]


## How to Get Started with the Model

Use the code below to get started with the model.

```Python

from transformers import AutoTokenizer, MT5ForConditionalGeneration

checkpoint = "syubraj/RomanEng2Nep-v2"
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = MT5ForConditionalGeneration.from_pretrained(checkpoint)

# Set max sequence length
max_seq_len = 20

def translate(text):
    # Tokenize the input text with a max length of 20
    inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=max_seq_len)

    # Generate translation
    translated = model.generate(**inputs)

    # Decode the translated tokens back to text
    translated_text = tokenizer.decode(translated[0], skip_special_tokens=True)
    return translated_text

# Example usage
source_text = "muskuraudai"  # Example Romanized Nepali text
translated_text = translate(source_text)
print(f"Translated Text: {translated_text}")
```



### Training Data

[syubraj/roman2nepali-transliteration](https://huggingface.co/datasets/syubraj/roman2nepali-transliteration)


#### Training Hyperparameters

- **Training regime:**
```Python
training_args = Seq2SeqTrainingArguments(
    output_dir="/content/drive/MyDrive/romaneng2nep_v2/",
    eval_strategy="steps",
    learning_rate=2e-5,
    per_device_train_batch_size=16,
    per_device_eval_batch_size=8,
    weight_decay=0.01,
    save_total_limit=3,
    num_train_epochs=2,
    predict_with_generate=True,
)
```

## Training and Validation Metrics

Step    | Training Loss | Validation Loss | Gen Len
--------|---------------|-----------------|---------
500     | 21.636200     | 9.776628        | 2.001900
1000    | 10.103400     | 6.105016        | 2.077900
1500    | 6.830800      | 5.081259        | 3.811600
2000    | 6.003100      | 4.702793        | 4.237300
2500    | 5.690200      | 4.469123        | 4.700000
3000    | 5.443100      | 4.274406        | 4.808300
3500    | 5.265300      | 4.121417        | 4.749400
4000    | 5.128500      | 3.989708        | 4.782300
4500    | 5.007200      | 3.885391        | 4.805100
5000    | 4.909600      | 3.787640        | 4.874800
5500    | 4.836000      | 3.715750        | 4.855500
6000    | 4.733000      | 3.640963        | 4.962000
6500    | 4.673500      | 3.587330        | 5.011600
7000    | 4.623800      | 3.531883        | 5.068300
7500    | 4.567400      | 3.481622        | 5.108500
8000    | 4.523200      | 3.445404        | 5.092700
8500    | 4.464000      | 3.413630        | 5.132700
9000    | 4.423100      | 3.326201        | 5.211700
9500    | 4.315700      | 3.238422        | 5.200600
10000   | 4.218200      | 3.143774        | 5.288100
10500   | 4.133600      | 3.080613        | 5.202300
11000   | 4.087700      | 3.011713        | 5.271800
11500   | 4.004300      | 2.957386        | 5.178700
12000   | 3.956700      | 2.898953        | 5.209600
12500   | 3.922800      | 2.850440        | 5.210100
13000   | 3.853400      | 2.796974        | 5.171700
13500   | 3.807900      | 2.745325        | 5.281200
14000   | 3.755700      | 2.708517        | 5.223000
14500   | 3.729300      | 2.678200        | 5.210700
15000   | 3.673600      | 2.637842        | 5.230200
15500   | 3.625400      | 2.607649        | 5.264100
16000   | 3.601100      | 2.592188        | 5.129800
16500   | 3.608200      | 2.556329        | 5.215800
17000   | 3.557900      | 2.536781        | 5.162900
17500   | 3.533500      | 2.504695        | 5.206000
18000   | 3.500000      | 2.477887        | 5.211600
18500   | 3.463600      | 2.456758        | 5.201000
19000   | 3.457100      | 2.433362        | 5.210000
19500   | 3.435400      | 2.411479        | 5.197600
20000   | 3.413300      | 2.392534        | 5.221100
20500   | 3.366100      | 2.378421        | 5.165200
21000   | 3.363500      | 2.357117        | 5.187300
21500   | 3.346500      | 2.343485        | 5.193600
22000   | 3.328300      | 2.331021        | 5.183300