File size: 1,925 Bytes
4e31e4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: em_wav
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# em_wav

This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6818
- Wer: 96.8954

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 1000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer     |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 3.9478        | 0.08  | 100  | 3.4707          | 99.1013 |
| 2.5514        | 0.16  | 200  | 2.4346          | 96.7116 |
| 1.7725        | 0.24  | 300  | 1.7743          | 99.9387 |
| 1.752         | 0.32  | 400  | 1.7586          | 97.1201 |
| 1.7447        | 0.4   | 500  | 1.7461          | 98.1413 |
| 1.7118        | 0.48  | 600  | 1.7304          | 97.1201 |
| 1.6823        | 0.56  | 700  | 1.7147          | 97.1201 |
| 1.7535        | 0.65  | 800  | 1.6987          | 97.8145 |
| 1.6772        | 0.73  | 900  | 1.6895          | 97.7941 |
| 1.6552        | 0.81  | 1000 | 1.6818          | 96.8954 |


### Framework versions

- Transformers 4.28.1
- Pytorch 2.0.1+cu117
- Datasets 2.13.0
- Tokenizers 0.13.3