Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,43 @@
|
|
1 |
---
|
2 |
license: mit
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: mit
|
3 |
---
|
4 |
+
|
5 |
+
|
6 |
+
This classification model is based on [sberbank-ai/ruRoberta-large](https://huggingface.co/sberbank-ai/ruRoberta-large).
|
7 |
+
The model should be used to produce relevance and specificity of the last message in the context of a dialog.
|
8 |
+
|
9 |
+
It is pretrained on corpus of dialog data from social networks and finetuned on [tinkoff-ai/context_similarity](https://huggingface.co/tinkoff-ai/context_similarity).
|
10 |
+
The performance of the model on validation split [tinkoff-ai/context_similarity](https://huggingface.co/tinkoff-ai/context_similarity) (with the best thresholds for validation samples):
|
11 |
+
|
12 |
+
<table>
|
13 |
+
<thead>
|
14 |
+
<tr>
|
15 |
+
<td colspan="2">relevance</td>
|
16 |
+
<td colspan="2">specificity</td>
|
17 |
+
</tr>
|
18 |
+
</thead>
|
19 |
+
<tbody>
|
20 |
+
<tr>
|
21 |
+
<td>f0.5</td>
|
22 |
+
<td>roc-auc</td>
|
23 |
+
<td>f0.5</td>
|
24 |
+
<td>roc-auc</td>
|
25 |
+
</tr>
|
26 |
+
<tr>
|
27 |
+
<td>0.86</td>
|
28 |
+
<td>0.83</td>
|
29 |
+
<td>0.85</td>
|
30 |
+
<td>0.86</td>
|
31 |
+
</tr>
|
32 |
+
</tbody>
|
33 |
+
</table>
|
34 |
+
|
35 |
+
The model can be loaded as follows:
|
36 |
+
|
37 |
+
```python
|
38 |
+
# pip install transformers
|
39 |
+
from transformers import AutoTokenizer, AutoModel
|
40 |
+
tokenizer = AutoTokenizer.from_pretrained("tinkoff-ai/context_similarity")
|
41 |
+
model = AutoModel.from_pretrained("tinkoff-ai/context_similarity")
|
42 |
+
# model.cuda()
|
43 |
+
```
|