Update README.md
Browse files
README.md
CHANGED
@@ -10,18 +10,72 @@ language:
|
|
10 |
|
11 |
T-pro-it-1.0 is a model built upon the Qwen 2.5 model family and incorporates both continual pre-training and alignment techniques.
|
12 |
|
13 |
-
Detailed model card’s coming soon…
|
14 |
-
|
15 |
### 📚 Dataset
|
16 |
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
## 📊 Benchmarks
|
20 |
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
## 👨💻 Examples of usage
|
24 |
|
|
|
25 |
|
26 |
```python
|
27 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
@@ -77,4 +131,29 @@ Output:
|
|
77 |
Поиск закономерностей — его цель, открыть тайны бытия.
|
78 |
От распознавания лиц до понимания речи,
|
79 |
Машинное обучение — это ключ, что открывает двери.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
```
|
|
|
10 |
|
11 |
T-pro-it-1.0 is a model built upon the Qwen 2.5 model family and incorporates both continual pre-training and alignment techniques.
|
12 |
|
|
|
|
|
13 |
### 📚 Dataset
|
14 |
|
15 |
+
Pre-training Stage 1:
|
16 |
+
100B tokens, consisting of diverse Russian data from Common Crawl, books, code, and proprietary datasets, mixed with re-played English data (English added as it is the primary language of the base model).
|
17 |
+
|
18 |
+
Pre-training Stage 2:
|
19 |
+
40B tokens, a mix of instruction and pre-training data.
|
20 |
+
|
21 |
+
Supervised Fine-Tuning (SFT):
|
22 |
+
1B tokens, a mix of diverse instruction data.
|
23 |
+
|
24 |
+
Preference Tuning:
|
25 |
+
1B tokens, training the model to be helpful.
|
26 |
|
27 |
## 📊 Benchmarks
|
28 |
|
29 |
+
Proprietary models:
|
30 |
+
|
31 |
+
| Benchmark | T-pro-it-1.0 | GPT-4o | GPT-4o-mini | GigaChat Max 1.0.26.20 |
|
32 |
+
|------------------------------------------------|-----------------------|------------------------------|-----------------------|---------------------|
|
33 |
+
| [MERA](https://mera.a-ai.ru) | <u>0.629</u> | **0.642** | 0.57 | 0.588 |
|
34 |
+
| [MaMuRaMu](https://mera.a-ai.ru/ru/tasks/22) | <u>0.841</u> | **0.874** | 0.779 | 0.824 |
|
35 |
+
| ruMMLU-PRO | <u>0.665</u> | **0.713** | 0.573 | 0.535 |
|
36 |
+
| ruGSM8K | **0.941** | <u>0.931</u> | 0.888 | 0.892 |
|
37 |
+
| ruMATH | **0.776** | <u>0.771</u> | 0.724 | 0.589 |
|
38 |
+
| ruMBPP | **0.805** | <u>0.802</u> | 0.79 | 0.626 |
|
39 |
+
| [ruCodeEval](https://mera.a-ai.ru/ru/tasks/23) | 0.432 / 0.626 / 0.677 | <u>0.529 / 0.649 / 0.683</u> | **0.704 / 0.753 / 0.768** | 0.077 / 0.093 / 0.098 |
|
40 |
+
| Arena-Hard-Ru | **90.17** | <u>84.87</u> | 81 | - |
|
41 |
+
| MT Bench Ru | <u>8.7</u> | **8.706** | 8.45 | 8.53 |
|
42 |
+
| Alpaca Eval Ru | <u>47.61</u> | **50** | 45.51 | 38.13 |
|
43 |
+
|
44 |
+
Open-source models:
|
45 |
+
|
46 |
+
| Benchmark | T-pro-it-1.0 | Qwen-2.5-32B-Instruct | RuAdapt-Qwen-32B-Instruct-v1 | gemma-2-27b-it | Llama-3.3-70B-Instruct |
|
47 |
+
|------------------------------------------------|---------------------------|-------------------------------|------------------------------|------------------------------|------------------------|
|
48 |
+
| [MERA](https://mera.a-ai.ru) | **0.629** | 0.578 | <u>0.615</u> | 0.574 | 0.567 |
|
49 |
+
| [MaMuRaMu](https://mera.a-ai.ru/ru/tasks/22) | **0.841** | <u>0.824</u> | 0.812 | 0.768 | 0.818 |
|
50 |
+
| ruMMLU-PRO | **0.665** | 0.637 | 0.631 | 0.470 | <u>0.653</u> |
|
51 |
+
| ruGSM8K | **0.941** | 0.926 | 0.923 | 0.894 | <u>0.934</u> |
|
52 |
+
| ruMATH | **0.776** | 0.727 | <u>0.742</u> | 0.538 | 0.636 |
|
53 |
+
| ruMBPP | 0.805 | **0.825** | <u>0.813</u> | 0.708 | 0.77 |
|
54 |
+
| [ruCodeEval](https://mera.a-ai.ru/ru/tasks/23) | **0.432 / 0.626 / 0.677** | 0.06 / 0.098 / 0.116 | 0.426 / 0.561 / 0.598 | <u>0.259 / 0.586 / 0.689</u> | 0.112 / 0.166 / 0.189 |
|
55 |
+
| Arena-Hard-Ru | **90.17** | 74.54 | <u>80.23</u> | 66.4 | 76.51 |
|
56 |
+
| MT Bench Ru | **8.7** | 8.15 | 8.39 | 7.96 | <u>8.26</u> |
|
57 |
+
| Alpaca Eval Ru | **47.61** | 35.01 | <u>43.15</u> | 38.82 | - |
|
58 |
+
|
59 |
+
|
60 |
+
|
61 |
+
| Benchmark | T-pro-it-1.0 | GPT-4o | GPT-4o-mini | Qwen-2.5-32B-Instruct | GigaChat Max 1.0.26.20 | RuAdapt-Qwen-32B-Instruct-v1 | gemma-2-27b-it | Llama-3.3-70B-Instruct |
|
62 |
+
|------------------------------------------------|-----------------------|------------------------------|-----------------------|-----------------------|--------------------|------------------------------|-----------------------|------------------------|
|
63 |
+
| [MERA](https://mera.a-ai.ru) | <u>0.629</u> | **0.642** | 0.57 | 0.578 | 0.588 | 0.615 | 0.574 | 0.567 |
|
64 |
+
| [MaMuRaMu](https://mera.a-ai.ru/ru/tasks/22) | <u>0.841</u> | **0.874** | 0.779 | 0.824 | 0.824 | 0.812 | 0.768 | 0.818 |
|
65 |
+
| ruMMLU-PRO | <u>0.665</u> | **0.713** | 0.573 | 0.637 | 0.535 | 0.631 | 0.470 | 0.653 |
|
66 |
+
| ruGSM8K | **0.941** | 0.931 | 0.888 | 0.926 | 0.892 | 0.923 | 0.894 | <u>0.934</u> |
|
67 |
+
| ruMATH | **0.776** | <u>0.771</u> | 0.724 | 0.727 | 0.589 | 0.742 | 0.538 | 0.636 |
|
68 |
+
| ruMBPP | 0.805 | 0.802 | 0.79 | **0.825** | 0.626 | <u>0.813</u> | 0.708 | 0.77 |
|
69 |
+
| [ruCodeEval](https://mera.a-ai.ru/ru/tasks/23) | 0.432 / 0.626 / 0.677 | <u>0.529 / 0.649 / 0.683</u> | **0.704 / 0.753 / 0.768** | 0.06 / 0.098 / 0.116 | 0.077 / 0.093 / 0.098 | 0.426 / 0.561 / 0.598 | 0.259 / 0.586 / 0.689 | 0.112 / 0.166 / 0.189 |
|
70 |
+
| Arena-Hard-Ru | **90.17** | <u>84.87</u> | 81 | 74.54 | - | 80.23 | 66.4 | 76.51 |
|
71 |
+
| MT Bench Ru | <u>8.7</u> | **8.706** | 8.45 | 8.15 | 8.53 | 8.39 | 7.96 | 8.26 |
|
72 |
+
| Alpaca Eval Ru | <u>47.61</u> | **50** | 45.51 | 35.01 | 38.13 | 43.15 | 38.82 | - |
|
73 |
+
|
74 |
+
Detailed evaluation results can be found in our [habr post](https://habr.com/ru/companies/tbank/articles/865582/)
|
75 |
|
76 |
## 👨💻 Examples of usage
|
77 |
|
78 |
+
### HF Usage
|
79 |
|
80 |
```python
|
81 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
|
131 |
Поиск закономерностей — его цель, открыть тайны бытия.
|
132 |
От распознавания лиц до понимания речи,
|
133 |
Машинное обучение — это ключ, что открывает двери.
|
134 |
+
```
|
135 |
+
|
136 |
+
### VLLM Usage
|
137 |
+
|
138 |
+
```python
|
139 |
+
from transformers import AutoTokenizer
|
140 |
+
from vllm import LLM, SamplingParams
|
141 |
+
|
142 |
+
model_name = "t-tech/T-pro-it-1.0"
|
143 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
144 |
+
llm = LLM(model=model_name)
|
145 |
+
sampling_params = SamplingParams(temperature=0.3, max_tokens=8192)
|
146 |
+
|
147 |
+
prompt = "Напиши стих про машинное обучение"
|
148 |
+
messages = [
|
149 |
+
{"role": "system", "content": "Ты T-pro, виртуальный ассистент в Т-Технологии. Твоя задача - быть полезным диалоговым ассистентом."},
|
150 |
+
{"role": "user", "content": prompt}
|
151 |
+
]
|
152 |
+
|
153 |
+
prompt_token_ids = tokenizer.apply_chat_template(messages, add_generation_prompt=True)
|
154 |
+
|
155 |
+
outputs = llm.generate(prompt_token_ids=prompt_token_ids, sampling_params=sampling_params)
|
156 |
+
|
157 |
+
generated_text = [output.outputs[0].text for output in outputs]
|
158 |
+
print(generated_text)
|
159 |
```
|