File size: 13,663 Bytes
8419f83
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f5b0e512710>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5b0e5127a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5b0e512830>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5b0e5128c0>", "_build": "<function ActorCriticPolicy._build at 0x7f5b0e512950>", "forward": "<function ActorCriticPolicy.forward at 0x7f5b0e5129e0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f5b0e512a70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5b0e512b00>", "_predict": "<function ActorCriticPolicy._predict at 0x7f5b0e512b90>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5b0e512c20>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5b0e512cb0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5b0e512d40>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f5b0e5078c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1688135919440752892, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADNf1L3abo0+LxYaPkWso768Dsq7mLtHPQAAAAAAAAAAQHw2PkutlT86mRM+GsbIvkJeiT5ui9y9AAAAAAAAAAATgXG+QDmbPu7Vhj5iJbO+WL9AvMIrNDoAAAAAAAAAAJoa1T0GImc/rH0MPYRQ4L4vUd49hj4FvgAAAAAAAAAAAGhNPRR0gz7SXEu+VtykvkQXmL1uVAY+AAAAAAAAAAAG/gu+8bgfP0V/bz0+yMy+nmLyvds5CDwAAAAAAAAAAMpBw76UEao+22RUPgrw/b5iYba+CHQaPgAAAAAAAAAAM8W7vd8rMD/KaMQ9bGLbvgdRwL2DhY87AAAAAAAAAABaJYc9uLbjuYoWMzOJUTiv40+Uu2OeyrMAAIA/AACAP63ZPb4fZS4/f945vbP03b7xjCG+7nk3PQAAAAAAAAAA2pyIveMRTj/OdWC9pkPpvuOS070CtSq9AAAAAAAAAACzghs+6QPhPvLbUL7E+cG+EE4hvEyfEzwAAAAAAAAAAI0t071OI6g/ZJMVvy/i8L5u3MW9HVWsvgAAAAAAAAAAWizKPd+fNj6WZnO+xV2qvsTp0r292uO9AAAAAAAAAAAzY1a7hcTpu0Segj71Ipq9mtoNvZirAb8AAIA/AACAPzMpKT32WQq8Q5HGvN2edL2GWB09Ud2JPgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV+QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHKvsCkoF3aMAWyUS+GMAXSUR0CzI6RrFfiQdX2UKGgGR0BuWcVrRBu5aAdL8mgIR0CzI7DnNgSfdX2UKGgGR0Bu/+8RL9MsaAdL7GgIR0CzI9KCL/CJdX2UKGgGR0BxKnPX05EMaAdL9mgIR0CzI9CmMwUQdX2UKGgGR0BylGteUpuuaAdL4GgIR0CzI/ZSNwR5dX2UKGgGR0BxAMOH31zyaAdL+2gIR0CzI/hdIGyHdX2UKGgGR0BxtSCI1tO3aAdL8mgIR0CzJHbGFSKndX2UKGgGR0BxgmrvLHMmaAdL8WgIR0CzJKsKTjebdX2UKGgGR0BwLOsr/bTMaAdL9WgIR0CzJL774zrNdX2UKGgGR0Bw6zxmTTvzaAdL7WgIR0CzJNlImPYGdX2UKGgGR0BwZEvGp++eaAdL/WgIR0CzJN8+u/1ydX2UKGgGR0B0HQb83uNQaAdL6GgIR0CzJN0mD15CdX2UKGgGR0Bw5HE0iyIIaAdL6WgIR0CzJPgZKnNxdX2UKGgGR0BzS/VmSQo1aAdL4WgIR0CzJQBaLXMAdX2UKGgGR0Bv8glnh86WaAdL42gIR0CzJQffj0cwdX2UKGgGR0BxZ39Hc1wYaAdL6GgIR0CzJRLXL/0edX2UKGgGR0BvsPq5byH3aAdL7GgIR0CzJUIDklu4dX2UKGgGR0BxtT8pCrtFaAdL+2gIR0CzJU2WD6FedX2UKGgGR0BzNzf4yoGZaAdL3GgIR0CzJXJvtMPCdX2UKGgGR0ByYmml67d0aAdL+2gIR0CzJXzCHh0hdX2UKGgGR0BvLI7JW/8EaAdL5GgIR0CzJYBGUfPpdX2UKGgGR0BziV+w1R+CaAdNJgFoCEdAsyW88Md92HV9lChoBkdAb/O/fwZwXWgHS/poCEdAsyYlh8Yyf3V9lChoBkdAbzjSrHU+cGgHS/hoCEdAsyZpwYLsr3V9lChoBkdAcQ6VclgMMWgHS+poCEdAsyZuhAWznnV9lChoBkdAcatAzpHI62gHTQcBaAhHQLMmdHuZ1FJ1fZQoaAZHQHMFUmUnogVoB0v0aAhHQLMmfzU7SzB1fZQoaAZHQHLYmLxZuAJoB0vuaAhHQLMmjl4TsY51fZQoaAZHQHEw+938n/loB0vqaAhHQLMml0QbuMN1fZQoaAZHQHCmgjyFwkxoB0v4aAhHQLMmqSXt0FN1fZQoaAZHQHBw9KVY6n1oB0v1aAhHQLMmtqBVdX11fZQoaAZHQHJdMfA9FF5oB00eAWgIR0CzJsQv+OwQdX2UKGgGR0ByuJvgm7aqaAdL42gIR0CzJsnQQcxTdX2UKGgGR0BxttGYrrgPaAdL3mgIR0CzJs0zfrKOdX2UKGgGR0Bwv6i0v4/NaAdNDAFoCEdAsyy1jPOY6XV9lChoBkdAcH7B7NSqEWgHTQIBaAhHQLMstsTnJT51fZQoaAZHQHGIVAJLM9toB00OAWgIR0CzLM+nQ6ZIdX2UKGgGR0BxyZUFSsKcaAdNIgFoCEdAsy15yEL6UXV9lChoBkdAcCTu3trsSmgHS+xoCEdAsy2GzLOiWXV9lChoBkdAbgYoP07KaGgHS+loCEdAsy3CE9Mbm3V9lChoBkdAcaWPZIxxk2gHS+RoCEdAsy3hTho/RnV9lChoBkdAcOodnTRYzWgHS+JoCEdAsy3oBGQSz3V9lChoBkdAb7uxgy/KyWgHS/ZoCEdAsy3p6C17Y3V9lChoBkdAcXOlqJuVHGgHTQMBaAhHQLMt/JcPe551fZQoaAZHQG+ZymqHXVdoB00FAWgIR0CzLhAQQL/kdX2UKGgGR0BwoTaM72csaAdL62gIR0CzLhpIczZZdX2UKGgGR0BwSyOAAhjfaAdL6GgIR0CzLi0nXumadX2UKGgGR0BvDddkauOkaAdL82gIR0CzLjYpUgjhdX2UKGgGR0By5U2aUiY+aAdNBwFoCEdAsy46sr/bTXV9lChoBkdAcRRvDgqEvmgHTQYBaAhHQLMuV3/givB1fZQoaAZHQG4qZHVf/m1oB0vvaAhHQLMuoLfk3jx1fZQoaAZHQHIpRm9QGfRoB0vpaAhHQLMupRT0g8t1fZQoaAZHQHGHUgbIcR1oB00TAWgIR0CzLtzOHFgldX2UKGgGR0BthluYQarFaAdL5GgIR0CzLw8IE8q4dX2UKGgGR0BxgDXg9/z8aAdL72gIR0CzLzQJ5VwQdX2UKGgGR0Bx6hr/KhcraAdL2GgIR0CzL2WPxQSBdX2UKGgGR0Bvz+P5pJwsaAdL4mgIR0CzL3nMhX8wdX2UKGgGR0BwhYoPTXrdaAdL9mgIR0CzL31gc94edX2UKGgGR0ByPeGM4tHyaAdL7WgIR0CzL4eY2Kl6dX2UKGgGR0Byui37UG3XaAdL22gIR0CzL5M63iJgdX2UKGgGR0BwmZ0FKTStaAdL/GgIR0CzL91rVOKwdX2UKGgGR0Bxn6/WUbDNaAdNFQFoCEdAsy/vCsOoYXV9lChoBkdAcb/Wt2cJ+mgHS+NoCEdAsy/6JUHY6HV9lChoBkdAcWSU70WdmWgHTQQBaAhHQLMwD+I/JNl1fZQoaAZHQHDcJ84PwuxoB00ZAWgIR0CzMCazzErHdX2UKGgGR0BvFkOVgQYlaAdNFQFoCEdAszAoyZa3Z3V9lChoBkdAcWitI065oWgHS9RoCEdAszA1XLeQ+3V9lChoBkdAcoxm7rcCYGgHS99oCEdAszBBY3eenXV9lChoBkdAbkqll9SdfGgHS+RoCEdAszCus2eg+XV9lChoBkdAcb2TGYKIBWgHTRsBaAhHQLMw8Ebo8p11fZQoaAZHQHMBaBEroW5oB0vLaAhHQLMxBsEJSix1fZQoaAZHQHD86YJE6T5oB0vYaAhHQLMxE4+KTB91fZQoaAZHQHC1NORDCxhoB0vhaAhHQLMxGqUu+RJ1fZQoaAZHQHCw/A44p+doB00LAWgIR0CzMSVnRLK3dX2UKGgGR0BvKHVmSQo1aAdNEAFoCEdAszF2+UQkHHV9lChoBkdAcX70F8ohIWgHTSEBaAhHQLMxg/5tWMl1fZQoaAZHQHK4EtmL9/BoB0vXaAhHQLMxi0v4/NZ1fZQoaAZHQHKj/iT+vQpoB0vraAhHQLMxlJaq0dB1fZQoaAZHQHFrvTkQwsZoB0v6aAhHQLMxuaF23a11fZQoaAZHQHDPmD15B1NoB0vqaAhHQLMxvhl18st1fZQoaAZHQG69ecYqG1xoB0vsaAhHQLMx1QyAQQN1fZQoaAZHQHPOfz4DcM5oB0vxaAhHQLMx3iliz9l1fZQoaAZHQHI0xiPQv6FoB0vlaAhHQLMx55GjKxN1fZQoaAZHQHIbsspXp4doB00CAWgIR0CzMgcN6PbPdX2UKGgGR0BRaXXVbzK+aAdL02gIR0CzMizjvNNbdX2UKGgGR0Byrfgdfb9IaAdL5WgIR0CzMoMyWRigdX2UKGgGR0ByX4HQhOgyaAdL8mgIR0CzMsXkkrwwdX2UKGgGR0BtcwsNDtw8aAdL/GgIR0CzMtMjFAE/dX2UKGgGR0ByMENTcZccaAdNBgFoCEdAszLbBUJfIHV9lChoBkdAcSI8UEgW8GgHS95oCEdAszMINayKN3V9lChoBkdAcIpIPsiSq2gHS+VoCEdAszMM+IMz/XV9lChoBkdAccl4i5d4V2gHTQ8BaAhHQLMzEh11W811fZQoaAZHQHIKGx2St/5oB0vmaAhHQLMzWG0u14R1fZQoaAZHQHEIHgUDdQBoB0vzaAhHQLMzeLWZqmF1fZQoaAZHQHHpmXXyy2RoB0vgaAhHQLMzfVMEidJ1fZQoaAZHQHDVcQZn+Q5oB0vfaAhHQLMzhRoh6jZ1fZQoaAZHQHIDRL0z0pVoB0vqaAhHQLMzhN34bjt1fZQoaAZHQHKnwXyiEg5oB00cAWgIR0CzM4m8274BdX2UKGgGR0BxV43T/hl2aAdNIgFoCEdAszOafvnbI3V9lChoBkdAcMVzCUHIIWgHS+hoCEdAszPXOVxCIHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 496, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True  True  True  True  True  True  True  True]", "bounded_above": "[ True  True  True  True  True  True  True  True]", "_shape": [8], "low": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "low_repr": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high_repr": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}