taehoon1lee commited on
Commit
9195115
·
1 Parent(s): edaeed8

first commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 276.24 +/- 15.48
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f5b0e512710>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5b0e5127a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5b0e512830>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5b0e5128c0>", "_build": "<function ActorCriticPolicy._build at 0x7f5b0e512950>", "forward": "<function ActorCriticPolicy.forward at 0x7f5b0e5129e0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f5b0e512a70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5b0e512b00>", "_predict": "<function ActorCriticPolicy._predict at 0x7f5b0e512b90>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5b0e512c20>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5b0e512cb0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5b0e512d40>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f5b0e5078c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1688133702237699881, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE1Vr7102IQ91mZLPKzITr4v9Qu9LThevQAAAAAAAAAA2rvEvd8FvTxVE0U9gOBKvhqMNL2NDWA8AAAAAAAAAACtpzC+D2F0vE4zALvcYCC5kKfUPQQ5IzoAAIA/AACAP03Yf72F0uS7Ze6NPY42uDyYz1K9lAiZPQAAgD8AAIA/GiO1vVyfXDlOg4Q8O7akuTlYy7YnL6m4AACAPwAAgD+IN42++3uOPoM5pz02c7C+W63qvZhmTz0AAAAAAAAAABrLSD3yLno+QBljvf9vs76pzKy7XPXKugAAAAAAAAAArX2fPmJG9z7mCcm+9B4Hv2FLMj1kpgK9AAAAAAAAAABNZZy94Xr0uCSoAzwvbBW5f7ygO2MIFbgAAIA/AACAPxqYN74iEKE/7TGvvmX9Kb+oMzi+N6SgvQAAAAAAAAAAAEjmPKdlTz/zcCM9crQOvxcoGT0oouk7AAAAAAAAAADmTo+9jjauP1bEKb+ixa6+BRfZuzIxIb4AAAAAAAAAAOaBAL1crUc+lrpZvbZ9ib6x5SS97SvUvAAAAAAAAAAAGgknvoMJJLzrbW472qeCOYkotD0A/KC6AACAPwAAgD+aU0m+aBekvL+jgLvDwse57xcOPobRozoAAIA/AACAP/MBoL0pSFy6GyB8uY+0ZrSZPbQ5AVaUOAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV6wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHD+EvXbudCMAWyUS9aMAXSUR0CdQiPC2tuDdX2UKGgGR0Bxg0dLg4wRaAdLw2gIR0CdQji1RceKdX2UKGgGR0BxLcfozN2UaAdLt2gIR0CdQp9y925hdX2UKGgGR0BzpXonrpqzaAdL8GgIR0CdQ5q9GqgidX2UKGgGR0Bw0Emmce8xaAdLv2gIR0CdRBfBvaUSdX2UKGgGR0Bwa/qcEvCeaAdNkQFoCEdAnURQTufEoHV9lChoBkdAcMkgF5fMOmgHS7NoCEdAnUSTWK/EfnV9lChoBkdAcN5tuUD+zmgHS8hoCEdAnUS4B/7SA3V9lChoBkdAcUW9sJpnH2gHS+toCEdAnUWS17Y023V9lChoBkdAchbB1cMVlGgHS+ZoCEdAnUbOcMEzPHV9lChoBkdAcZh3jdYW+GgHS7xoCEdAnUeClSCOFXV9lChoBkdAcYc8BdUsF2gHS95oCEdAnUgN5Y5ksnV9lChoBkdAcpxeu3c582gHS7JoCEdAnUg/bGm1pnV9lChoBkdAcPO5z5oGp2gHS8loCEdAnUkFJg9eQnV9lChoBkdAcafwXIlt0mgHS+JoCEdAnUnDSXt0FXV9lChoBkdAb/jENvwVkGgHS9ZoCEdAnUnSOvMbFXV9lChoBkdAcDlw97ngYWgHS71oCEdAnUpup84Pw3V9lChoBkdAcBce+Eh7mmgHS8VoCEdAnUrtRWLgoHV9lChoBkdAcc0BKL8762gHS7doCEdAnUt4T4+KTHV9lChoBkdAcArPXTVlPWgHS9hoCEdAnUu1Cw8nu3V9lChoBkdAcvFUs4DLbGgHS/loCEdAnUwoTbnHN3V9lChoBkdAcVg/Lkjop2gHS8ZoCEdAnU3UCvHLinV9lChoBkdAcFieUpuuR2gHS7poCEdAnU4AcHWz4XV9lChoBkdAcV4DUExIrmgHS99oCEdAnU4A6ZH/cXV9lChoBkdAcJ9ois4kvGgHS7RoCEdAnU7YW1twaXV9lChoBkdAcORIn0Cih2gHS9JoCEdAnU8IQe3hGnV9lChoBkdAYb36k690zWgHTegDaAhHQJ1QMLjPv8Z1fZQoaAZHQG7eoCdSVGFoB0vGaAhHQJ1QUlPacqh1fZQoaAZHQGS0bBwdbPhoB03oA2gIR0CdUMx+az/qdX2UKGgGR0Bxh/5VOsT4aAdL3GgIR0CdUO+hGpdbdX2UKGgGR0BycEmShakiaAdLwmgIR0CdUUVurIYFdX2UKGgGR0Bx7lmEoOQRaAdL1WgIR0CdUV3AmAskdX2UKGgGR0BwYxbGFSKnaAdLxWgIR0CdUmtsN2C/dX2UKGgGR0ByNfhFVktmaAdL3WgIR0CdUnq8lHBldX2UKGgGR0ByEeuvECNkaAdL7WgIR0CdUyMy8BdVdX2UKGgGR0Bvw96cAimmaAdLvmgIR0CdU+jGkvbodX2UKGgGR0Bwxk5vLowFaAdLy2gIR0CdVCVR1oxpdX2UKGgGR0BxStYeT3ZgaAdLzGgIR0CdVTBMi8nNdX2UKGgGR0ByUg6NlyzYaAdL62gIR0CdVfh6Skj5dX2UKGgGR0Bxyaur6tT2aAdLs2gIR0CdVimq5sj3dX2UKGgGR0BxpCDXe3x4aAdLy2gIR0CdVimjj7yhdX2UKGgGR0By85FtsN2DaAdNDQFoCEdAnVZAiV0LdHV9lChoBkdAcWnaS9ugpWgHS7xoCEdAnVZMBuGbkXV9lChoBkdAcpiRYigTRWgHS81oCEdAnVcy5y2hI3V9lChoBkdAcaNCMxXXAmgHTQIBaAhHQJ1X2JVKf4B1fZQoaAZHQGCXguIyj59oB03oA2gIR0CdWBMZxaPkdX2UKGgGR0Bw2k0aZQYUaAdLvGgIR0CdWJvuw5eadX2UKGgGR0BxR+fxtpEhaAdL2GgIR0CdWLqfvnbJdX2UKGgGR0BwgrKxLTQWaAdLuWgIR0CdWTDh99c9dX2UKGgGR0BxHy3gDRtxaAdL9GgIR0CdWYXMQmNSdX2UKGgGR0ByC70h/y5JaAdL4WgIR0CdWqF/QSi/dX2UKGgGR0ByPOxLTQVsaAdL0WgIR0CdWzbrkbPydX2UKGgGR0BwpLfwZwXJaAdLymgIR0CdW8myPdVOdX2UKGgGR0Bts7srupjuaAdLwmgIR0CdW+CpWFN+dX2UKGgGR0By9JtDUmUoaAdL72gIR0CdXR6PsAvMdX2UKGgGR0BzXL6guh9LaAdLs2gIR0CdXT9/SYw7dX2UKGgGR0ByfgbJfYz0aAdL4mgIR0CdXdBVuJk5dX2UKGgGR0BxDH0OEug6aAdL1GgIR0CdXgjurp7kdX2UKGgGR0Bx+uv/zasZaAdN0QFoCEdAnV8Ju63AmHV9lChoBkdAcE+6O5rgwWgHS9JoCEdAnV8P47A+IXV9lChoBkdAcZb+w1R+B2gHS+BoCEdAnWAIZqEeyXV9lChoBkdAceKMTviLl2gHS9ZoCEdAnWABRhttRHV9lChoBkdAbpvKYiPhh2gHS8JoCEdAnWCcafjCHnV9lChoBkdAcof1G9YfXGgHTXcBaAhHQJ1hWmygPEt1fZQoaAZHQHHktix3V09oB0vmaAhHQJ1iVbOeJ551fZQoaAZHQHJ30SmIj4ZoB0vXaAhHQJ1ihg9eQdV1fZQoaAZHQGZWVgQYk3VoB03oA2gIR0CdYpM+eOGTdX2UKGgGR0ByAnc0tRNzaAdL6GgIR0CdYu6PKdQPdX2UKGgGR0Bwck6uGKyfaAdLuGgIR0CdYwAiml67dX2UKGgGR0BtO/sqril0aAdLvmgIR0CdYw6cAimmdX2UKGgGR0BwYnFbVz6raAdLw2gIR0CdY+9cry2AdX2UKGgGR0BxM3IsAeaKaAdL5mgIR0CdZLDhLoOhdX2UKGgGR0Bw38BcRlH0aAdL1WgIR0CdZUD5CWu6dX2UKGgGR0BzSU43m3fAaAdLymgIR0CdZdWpZOi4dX2UKGgGR0Bw2IGgSOBEaAdL1WgIR0CdZh4lQdjodX2UKGgGR0ByJBke6qbSaAdL7GgIR0CdZ339rGipdX2UKGgGR0Bx70tJ4B3iaAdLwWgIR0CdaHuyeI2wdX2UKGgGR0BwlcDQqqffaAdLx2gIR0CdaWrksBhhdX2UKGgGR0Bw//6XSjQBaAdL4GgIR0CdaZjIq9XcdX2UKGgGR0BwTrwjMV1waAdNAAFoCEdAnWmZ8F6iTXV9lChoBkdAcKfLpiZv1mgHS8poCEdAnWm6tPpIMHV9lChoBkdAcS+TFl05l2gHS+xoCEdAnWpjw2ETQHV9lChoBkdAcHnneBQN1GgHS+JoCEdAnWqsQd0aInV9lChoBkdAcqhb2USqVGgHS8ZoCEdAnWr+zyBkJHV9lChoBkdAcZeo6jnFHmgHS7doCEdAnWxbedkJ8nV9lChoBkdAc2xxiG34K2gHS7doCEdAnW03BHkLhXV9lChoBkdActLF0PpY92gHS/FoCEdAnW3wK8cuJ3V9lChoBkdAbxEXpGFzuGgHS81oCEdAnXCLHZK3/nV9lChoBkdAcxdKWcBltmgHS9NoCEdAnXH4d+5OJ3V9lChoBkdAbo7/vOQhfWgHS71oCEdAnXIIzBRAKXV9lChoBkdAcC/JO32EkGgHS8JoCEdAnXIceOn2qXV9lChoBkdAcLuB7NSqEWgHS9loCEdAnXN7y1/lQ3V9lChoBkdAb94+AVfu1GgHS9VoCEdAnXQwTEit73V9lChoBkdAcwUFWGRFJGgHS/doCEdAnXUahcqvvHV9lChoBkdAch0212JSBWgHS+5oCEdAnXXGZZ0Sy3V9lChoBkdAb5/xlxwQ2GgHS8poCEdAnXYHYxtYS3V9lChoBkdAc8CpQ1rIo2gHS+poCEdAnXYAb+98JHV9lChoBkdAcAz8GcFyJmgHS9FoCEdAnXgzQeFL4HV9lChoBkdAcqw2bXpW3mgHS/RoCEdAnXkZIH1OCXV9lChoBkdAZgshsZYPoWgHTegDaAhHQJ16+GcnVoZ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 380, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a7a4f56c02632bece12355b4a7cb779f347d416d52a399c16058388ee1b990bf
3
+ size 146638
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f5b0e512710>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5b0e5127a0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5b0e512830>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5b0e5128c0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f5b0e512950>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f5b0e5129e0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f5b0e512a70>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5b0e512b00>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f5b0e512b90>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5b0e512c20>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5b0e512cb0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5b0e512d40>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f5b0e5078c0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1688133702237699881,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE1Vr7102IQ91mZLPKzITr4v9Qu9LThevQAAAAAAAAAA2rvEvd8FvTxVE0U9gOBKvhqMNL2NDWA8AAAAAAAAAACtpzC+D2F0vE4zALvcYCC5kKfUPQQ5IzoAAIA/AACAP03Yf72F0uS7Ze6NPY42uDyYz1K9lAiZPQAAgD8AAIA/GiO1vVyfXDlOg4Q8O7akuTlYy7YnL6m4AACAPwAAgD+IN42++3uOPoM5pz02c7C+W63qvZhmTz0AAAAAAAAAABrLSD3yLno+QBljvf9vs76pzKy7XPXKugAAAAAAAAAArX2fPmJG9z7mCcm+9B4Hv2FLMj1kpgK9AAAAAAAAAABNZZy94Xr0uCSoAzwvbBW5f7ygO2MIFbgAAIA/AACAPxqYN74iEKE/7TGvvmX9Kb+oMzi+N6SgvQAAAAAAAAAAAEjmPKdlTz/zcCM9crQOvxcoGT0oouk7AAAAAAAAAADmTo+9jjauP1bEKb+ixa6+BRfZuzIxIb4AAAAAAAAAAOaBAL1crUc+lrpZvbZ9ib6x5SS97SvUvAAAAAAAAAAAGgknvoMJJLzrbW472qeCOYkotD0A/KC6AACAPwAAgD+aU0m+aBekvL+jgLvDwse57xcOPobRozoAAIA/AACAP/MBoL0pSFy6GyB8uY+0ZrSZPbQ5AVaUOAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWV6wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHD+EvXbudCMAWyUS9aMAXSUR0CdQiPC2tuDdX2UKGgGR0Bxg0dLg4wRaAdLw2gIR0CdQji1RceKdX2UKGgGR0BxLcfozN2UaAdLt2gIR0CdQp9y925hdX2UKGgGR0BzpXonrpqzaAdL8GgIR0CdQ5q9GqgidX2UKGgGR0Bw0Emmce8xaAdLv2gIR0CdRBfBvaUSdX2UKGgGR0Bwa/qcEvCeaAdNkQFoCEdAnURQTufEoHV9lChoBkdAcMkgF5fMOmgHS7NoCEdAnUSTWK/EfnV9lChoBkdAcN5tuUD+zmgHS8hoCEdAnUS4B/7SA3V9lChoBkdAcUW9sJpnH2gHS+toCEdAnUWS17Y023V9lChoBkdAchbB1cMVlGgHS+ZoCEdAnUbOcMEzPHV9lChoBkdAcZh3jdYW+GgHS7xoCEdAnUeClSCOFXV9lChoBkdAcYc8BdUsF2gHS95oCEdAnUgN5Y5ksnV9lChoBkdAcpxeu3c582gHS7JoCEdAnUg/bGm1pnV9lChoBkdAcPO5z5oGp2gHS8loCEdAnUkFJg9eQnV9lChoBkdAcafwXIlt0mgHS+JoCEdAnUnDSXt0FXV9lChoBkdAb/jENvwVkGgHS9ZoCEdAnUnSOvMbFXV9lChoBkdAcDlw97ngYWgHS71oCEdAnUpup84Pw3V9lChoBkdAcBce+Eh7mmgHS8VoCEdAnUrtRWLgoHV9lChoBkdAcc0BKL8762gHS7doCEdAnUt4T4+KTHV9lChoBkdAcArPXTVlPWgHS9hoCEdAnUu1Cw8nu3V9lChoBkdAcvFUs4DLbGgHS/loCEdAnUwoTbnHN3V9lChoBkdAcVg/Lkjop2gHS8ZoCEdAnU3UCvHLinV9lChoBkdAcFieUpuuR2gHS7poCEdAnU4AcHWz4XV9lChoBkdAcV4DUExIrmgHS99oCEdAnU4A6ZH/cXV9lChoBkdAcJ9ois4kvGgHS7RoCEdAnU7YW1twaXV9lChoBkdAcORIn0Cih2gHS9JoCEdAnU8IQe3hGnV9lChoBkdAYb36k690zWgHTegDaAhHQJ1QMLjPv8Z1fZQoaAZHQG7eoCdSVGFoB0vGaAhHQJ1QUlPacqh1fZQoaAZHQGS0bBwdbPhoB03oA2gIR0CdUMx+az/qdX2UKGgGR0Bxh/5VOsT4aAdL3GgIR0CdUO+hGpdbdX2UKGgGR0BycEmShakiaAdLwmgIR0CdUUVurIYFdX2UKGgGR0Bx7lmEoOQRaAdL1WgIR0CdUV3AmAskdX2UKGgGR0BwYxbGFSKnaAdLxWgIR0CdUmtsN2C/dX2UKGgGR0ByNfhFVktmaAdL3WgIR0CdUnq8lHBldX2UKGgGR0ByEeuvECNkaAdL7WgIR0CdUyMy8BdVdX2UKGgGR0Bvw96cAimmaAdLvmgIR0CdU+jGkvbodX2UKGgGR0Bwxk5vLowFaAdLy2gIR0CdVCVR1oxpdX2UKGgGR0BxStYeT3ZgaAdLzGgIR0CdVTBMi8nNdX2UKGgGR0ByUg6NlyzYaAdL62gIR0CdVfh6Skj5dX2UKGgGR0Bxyaur6tT2aAdLs2gIR0CdVimq5sj3dX2UKGgGR0BxpCDXe3x4aAdLy2gIR0CdVimjj7yhdX2UKGgGR0By85FtsN2DaAdNDQFoCEdAnVZAiV0LdHV9lChoBkdAcWnaS9ugpWgHS7xoCEdAnVZMBuGbkXV9lChoBkdAcpiRYigTRWgHS81oCEdAnVcy5y2hI3V9lChoBkdAcaNCMxXXAmgHTQIBaAhHQJ1X2JVKf4B1fZQoaAZHQGCXguIyj59oB03oA2gIR0CdWBMZxaPkdX2UKGgGR0Bw2k0aZQYUaAdLvGgIR0CdWJvuw5eadX2UKGgGR0BxR+fxtpEhaAdL2GgIR0CdWLqfvnbJdX2UKGgGR0BwgrKxLTQWaAdLuWgIR0CdWTDh99c9dX2UKGgGR0BxHy3gDRtxaAdL9GgIR0CdWYXMQmNSdX2UKGgGR0ByC70h/y5JaAdL4WgIR0CdWqF/QSi/dX2UKGgGR0ByPOxLTQVsaAdL0WgIR0CdWzbrkbPydX2UKGgGR0BwpLfwZwXJaAdLymgIR0CdW8myPdVOdX2UKGgGR0Bts7srupjuaAdLwmgIR0CdW+CpWFN+dX2UKGgGR0By9JtDUmUoaAdL72gIR0CdXR6PsAvMdX2UKGgGR0BzXL6guh9LaAdLs2gIR0CdXT9/SYw7dX2UKGgGR0ByfgbJfYz0aAdL4mgIR0CdXdBVuJk5dX2UKGgGR0BxDH0OEug6aAdL1GgIR0CdXgjurp7kdX2UKGgGR0Bx+uv/zasZaAdN0QFoCEdAnV8Ju63AmHV9lChoBkdAcE+6O5rgwWgHS9JoCEdAnV8P47A+IXV9lChoBkdAcZb+w1R+B2gHS+BoCEdAnWAIZqEeyXV9lChoBkdAceKMTviLl2gHS9ZoCEdAnWABRhttRHV9lChoBkdAbpvKYiPhh2gHS8JoCEdAnWCcafjCHnV9lChoBkdAcof1G9YfXGgHTXcBaAhHQJ1hWmygPEt1fZQoaAZHQHHktix3V09oB0vmaAhHQJ1iVbOeJ551fZQoaAZHQHJ30SmIj4ZoB0vXaAhHQJ1ihg9eQdV1fZQoaAZHQGZWVgQYk3VoB03oA2gIR0CdYpM+eOGTdX2UKGgGR0ByAnc0tRNzaAdL6GgIR0CdYu6PKdQPdX2UKGgGR0Bwck6uGKyfaAdLuGgIR0CdYwAiml67dX2UKGgGR0BtO/sqril0aAdLvmgIR0CdYw6cAimmdX2UKGgGR0BwYnFbVz6raAdLw2gIR0CdY+9cry2AdX2UKGgGR0BxM3IsAeaKaAdL5mgIR0CdZLDhLoOhdX2UKGgGR0Bw38BcRlH0aAdL1WgIR0CdZUD5CWu6dX2UKGgGR0BzSU43m3fAaAdLymgIR0CdZdWpZOi4dX2UKGgGR0Bw2IGgSOBEaAdL1WgIR0CdZh4lQdjodX2UKGgGR0ByJBke6qbSaAdL7GgIR0CdZ339rGipdX2UKGgGR0Bx70tJ4B3iaAdLwWgIR0CdaHuyeI2wdX2UKGgGR0BwlcDQqqffaAdLx2gIR0CdaWrksBhhdX2UKGgGR0Bw//6XSjQBaAdL4GgIR0CdaZjIq9XcdX2UKGgGR0BwTrwjMV1waAdNAAFoCEdAnWmZ8F6iTXV9lChoBkdAcKfLpiZv1mgHS8poCEdAnWm6tPpIMHV9lChoBkdAcS+TFl05l2gHS+xoCEdAnWpjw2ETQHV9lChoBkdAcHnneBQN1GgHS+JoCEdAnWqsQd0aInV9lChoBkdAcqhb2USqVGgHS8ZoCEdAnWr+zyBkJHV9lChoBkdAcZeo6jnFHmgHS7doCEdAnWxbedkJ8nV9lChoBkdAc2xxiG34K2gHS7doCEdAnW03BHkLhXV9lChoBkdActLF0PpY92gHS/FoCEdAnW3wK8cuJ3V9lChoBkdAbxEXpGFzuGgHS81oCEdAnXCLHZK3/nV9lChoBkdAcxdKWcBltmgHS9NoCEdAnXH4d+5OJ3V9lChoBkdAbo7/vOQhfWgHS71oCEdAnXIIzBRAKXV9lChoBkdAcC/JO32EkGgHS8JoCEdAnXIceOn2qXV9lChoBkdAcLuB7NSqEWgHS9loCEdAnXN7y1/lQ3V9lChoBkdAb94+AVfu1GgHS9VoCEdAnXQwTEit73V9lChoBkdAcwUFWGRFJGgHS/doCEdAnXUahcqvvHV9lChoBkdAch0212JSBWgHS+5oCEdAnXXGZZ0Sy3V9lChoBkdAb5/xlxwQ2GgHS8poCEdAnXYHYxtYS3V9lChoBkdAc8CpQ1rIo2gHS+poCEdAnXYAb+98JHV9lChoBkdAcAz8GcFyJmgHS9FoCEdAnXgzQeFL4HV9lChoBkdAcqw2bXpW3mgHS/RoCEdAnXkZIH1OCXV9lChoBkdAZgshsZYPoWgHTegDaAhHQJ16+GcnVoZ1ZS4="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 380,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 2048,
81
+ "gamma": 0.99,
82
+ "gae_lambda": 0.95,
83
+ "ent_coef": 0.0,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 10,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:088f5e0d370e932363d7ee396dd0fc31badf947163f02489366bd2001076a24e
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d537b2e7a3add052348dcb957aacfa8ff95db09d123122bb7b3e02f592bdf409
3
+ size 43329
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (119 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 276.2395533, "std_reward": 15.483419256034384, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-06-30T14:35:21.731791"}