taehoon1lee
commited on
Commit
•
d1c0d10
1
Parent(s):
d1a4ebd
4th
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +21 -21
- ppo-LunarLander-v2/policy.optimizer.pth +1 -1
- ppo-LunarLander-v2/policy.pth +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 282.43 +/- 17.25
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f0806e00a60>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0806e00af0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0806e00b80>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0806e00c10>", "_build": "<function ActorCriticPolicy._build at 0x7f0806e00ca0>", "forward": "<function ActorCriticPolicy.forward at 0x7f0806e00d30>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f0806e00dc0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0806e00e50>", "_predict": "<function ActorCriticPolicy._predict at 0x7f0806e00ee0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0806e00f70>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0806e03040>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0806e030d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f0806e7e4e0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690722383945666797, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM1wbL1Dkpw+diVmPY+KpL7wpLQ8pCG2PAAAAAAAAAAADZC2PbjG97koA+66JMIFtsMbOjqY3A46AACAPwAAAAAAVN87KbA/ulQLGzxphvC4u85cuKOy7bcAAIA/AACAPzODorvDYSW6kFMTuECgAbOpI606zpAvNwAAgD8AAIA/ANYCvEGJ4Lzdelw9BTlavZmftrpWA2C9AACAPwAAgD9mqLQ8z2UuvJ1nPTvJ/7877l+PPbBArrwAAIA/AACAP82Njjwp3HC6VUh5ujNLWLZ88Au7c/GROQAAgD8AAIA/gEn8vSfCQT66tCE+U0yJvpphBb1koAE9AAAAAAAAAABA+Rc+cEigP5FXpz6lNca+5nNuPmaTcbsAAAAAAAAAAGYHoL1Cg7A/GJ7avntCnL6wNYu94Yq0vQAAAAAAAAAAZl2zva5pmLoKSkq68/2+t4d53DhqGBo5AACAPwAAAAAzBKw8e2CFuhWC1bTmHLavFHAWOw0uEzQAAIA/AACAPwC8jzvD+W66qvkDPNaZADYduYm7Pu3wNAAAgD8AAIA/TU6zPbRFvD+G/hE/M4aGPHRKgD1fY5U+AAAAAAAAAADNFi29pEGpPTemAz4LRi6+PsXdPMdHxTwAAAAAAAAAAM1mTT17Z6k/o6JEPt+awb4TxM09KjxGPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHBmFrdnCfqMAWyUTfABjAF0lEdAkqdLLpzLfXV9lChoBkdAYpDV9Wp6yGgHTegDaAhHQJKoZAqur6t1fZQoaAZHQGZFgKneiztoB03oA2gIR0CSqJz4k/r0dX2UKGgGR0Bt7LrgOz6aaAdNvwNoCEdAkrCyMUAT7HV9lChoBkdAb0y4Cp3otGgHTdQBaAhHQJK7oJjUd7x1fZQoaAZHQG02Pw3HaOBoB01hA2gIR0CSvWZc9nscdX2UKGgGR0Bi2a5sj3VTaAdN6ANoCEdAkr3giml67nV9lChoBkdAY0jb1RLsbGgHTegDaAhHQJK+lhuwX691fZQoaAZHQHM33DiwSrZoB01fAWgIR0CSxXH/LkjpdX2UKGgGR0A8rDjin5zpaAdL/mgIR0CSyZpVCHARdX2UKGgGR0BlWBZ0Syt3aAdN6ANoCEdAksrcLfDUE3V9lChoBkdAcfMbBGhEjWgHTewCaAhHQJLLeK1og3d1fZQoaAZHQGDVB0yP+4toB03oA2gIR0CSzCAJswcpdX2UKGgGR0BwAhcB2fTTaAdNpgNoCEdAks8JmmLtNXV9lChoBkdAb5E6QNkOJGgHTWoBaAhHQJLmL63y7PJ1fZQoaAZHQGRK3wkPcztoB03oA2gIR0CS5oWXTmW/dX2UKGgGR0BuWQqAjIJaaAdN1QNoCEdAkucYhllK9XV9lChoBkdAYy+ivgWJrWgHTegDaAhHQJLowuOCGvh1fZQoaAZHQG47QJw84gloB00hA2gIR0CS6Pcry1/ldX2UKGgGR0BsJ60Y0l7daAdN6ANoCEdAkuzvKuB+WnV9lChoBkdAXoRa9sabWmgHTegDaAhHQJLw7AfuCwt1fZQoaAZHQDtPO+qR2bJoB00OAWgIR0CS8WndweeWdX2UKGgGR0Bydd85S3spaAdNaQJoCEdAkvHUWIoE0XV9lChoBkdAcKn9c8kleGgHTW0BaAhHQJLyBEYwZfl1fZQoaAZHQGFV4NZvDP5oB03oA2gIR0CS8iX1anrIdX2UKGgGR0BwM/wF1SwXaAdNtwFoCEdAkvNem78Nx3V9lChoBkdAcUsezlcQiGgHTaMBaAhHQJL0uXTmW+p1fZQoaAZHQEDJ7VJ+UhVoB00HAWgIR0CS/W4Uvf0mdX2UKGgGR0ByTCwX668QaAdNHgFoCEdAkv4bKNhmXnV9lChoBkdAb5PjLjghr2gHTQsDaAhHQJL/Gq6vq1R1fZQoaAZHQHEwEuQIUrVoB00uAmgIR0CTAfbSZ0CBdX2UKGgGR0BjvBlUZNwjaAdN6ANoCEdAkwPL0nPVu3V9lChoBkdAQWEBwMpgC2gHTQcBaAhHQJMMkrsjVx11fZQoaAZHQFzzDYRNATtoB03oA2gIR0CTD9wYtQKsdX2UKGgGR0BvvSebutwKaAdNgANoCEdAkxBD5TIeYHV9lChoBkdAbbFrIHTqjmgHTZkCaAhHQJMQ5fBvaUR1fZQoaAZHQGulRQSBbwBoB028AmgIR0CTE5ktVaOhdX2UKGgGR0BouL5TIeYEaAdN6ANoCEdAkxVmPcSGrXV9lChoBkdAaElmaH9FWmgHTegDaAhHQJMn5tLteD51fZQoaAZHQHBLXEyckMVoB03PA2gIR0CTKMY/mknDdX2UKGgGR0Bm7vllsguAaAdN6ANoCEdAky4MLa24NXV9lChoBkdAcITJRfnfVWgHTfgBaAhHQJMuTivPkaN1fZQoaAZHQGzMu27Wd3BoB02IAWgIR0CTMLfuTibVdX2UKGgGR0BlZZgPVd5ZaAdN6ANoCEdAkzNR8IAwPHV9lChoBkdAZpahfShJy2gHTegDaAhHQJM025Fw1ix1fZQoaAZHQHE3lsguAZtoB03NA2gIR0CTNTwiJO32dX2UKGgGR0BvHmIj4YaYaAdNUwFoCEdAkzcC1qnFYXV9lChoBkdAcEQFMqSX+mgHTTMDaAhHQJM3kth/iHZ1fZQoaAZHQHB0NTcZccFoB00JAmgIR0CTOjBfKISEdX2UKGgGR0ByTqUB4lhPaAdN0gFoCEdAkzr4vSMLnnV9lChoBkdAcd59fCyhSWgHTUsBaAhHQJM9tgeA/cF1fZQoaAZHQGS+lk6Lfk5oB03oA2gIR0CTPzP4VRDUdX2UKGgGR0BuWYfr8iwCaAdNOQJoCEdAk0ImRzRx+HV9lChoBkdARGMNpdrwfGgHTQQBaAhHQJNC30HyEtd1fZQoaAZHQG3kXbEgntxoB02NAWgIR0CTQykTHsC1dX2UKGgGR0BjsLdrO7g9aAdN6ANoCEdAk0Oh9G7SRnV9lChoBkdAUIAOx0MgEGgHS+9oCEdAk0k0SRKYiXV9lChoBkdAcN1DvVmSQ2gHTVABaAhHQJNLARqXWvt1fZQoaAZHQGvjPKlpGnZoB02gAWgIR0CTS04+KTB7dX2UKGgGR0ByaIkleF+NaAdNnQNoCEdAk04UZJkGzXV9lChoBkdAYfYCOFQEZGgHTegDaAhHQJNQz4Fiay91fZQoaAZHQGvptJvo/zJoB019AWgIR0CTUavAXVLBdX2UKGgGR0BxJA60Y0l7aAdNfQFoCEdAk1WZvDP4VXV9lChoBkdAbwASf16E8WgHTQEDaAhHQJNpj7wazeJ1fZQoaAZHQGJbnKW9lEtoB03oA2gIR0CTab7aZhKEdX2UKGgGR0By/ROrQw9JaAdN5QJoCEdAk2oMrqdH2HV9lChoBkdAbZ1x5LRKH2gHTeEBaAhHQJNrAj7hvR91fZQoaAZHQHF+I64lQdloB017AWgIR0CTbKUutfXxdX2UKGgGR0Be7AiqyWzGaAdN6ANoCEdAk255Huqm0nV9lChoBkdAcBlSsKb8WWgHTRcBaAhHQJNu2z7di2F1fZQoaAZHQFAS0HQhOgxoB0vZaAhHQJN0Sr+5vtN1fZQoaAZHQGEduzY287JoB03oA2gIR0CTdMw7T2FndX2UKGgGR0Byc6e18b71aAdNKQJoCEdAk3W99+gDinV9lChoBkdAUyBH4Glhw2gHS+doCEdAk3auwX668XV9lChoBkdAcRw6bvw3HmgHTWECaAhHQJN4kA6uGK11fZQoaAZHQFMlRrJr+HdoB0vnaAhHQJN4w7Pppvh1fZQoaAZHQHKL4qgAZKpoB02TAWgIR0CTeNzAeq7zdX2UKGgGR0A0qHo5ggHNaAdL5mgIR0CTeR1wYLssdX2UKGgGR0Bua3UWl/H6aAdNawFoCEdAk3myFXaJynV9lChoBkdAZF+hhYvFnGgHTegDaAhHQJN51CzC1qp1fZQoaAZHQG4/Uaya/h5oB02RAmgIR0CTfG6kqMFVdX2UKGgGR0BwbWALApKBaAdNwgNoCEdAk3/J7w8W9HV9lChoBkdAcP1xbSqlxmgHTc0DaAhHQJOAiFlCkXV1fZQoaAZHQG9IRDst03hoB02xAmgIR0CTgKM4cWCVdX2UKGgGR0BxcAFRpDeCaAdNMgFoCEdAk4K9O/L1VnV9lChoBkdAcr/evIOpbWgHTXABaAhHQJOEgXDWK/F1fZQoaAZHQHIea7iADq5oB008AWgIR0CThTz41xbTdX2UKGgGR0BxldlkH2RJaAdNvQFoCEdAk4ZrE5yU93V9lChoBkdAbMKrhisnzGgHTWMBaAhHQJOGxqTKT0R1fZQoaAZHQG7RCjL0SRNoB01LAWgIR0CThvBK+SKWdX2UKGgGR0BCpyGrS3LFaAdL0WgIR0CTiFgHNX5ndX2UKGgGR0BthrQ7cO9WaAdN6AFoCEdAk4iZyIYWL3V9lChoBkdAcVLwzch1T2gHS/hoCEdAk4qtLHuJDXV9lChoBkdASgRbB42S+2gHS8hoCEdAk4r642CNCXV9lChoBkdAPoGYKIBRymgHS8doCEdAk4yOGj9GZ3V9lChoBkdAbTvPyCnP3WgHTeMBaAhHQJOM3cL0Bfd1fZQoaAZHQHKh0jkdWABoB00QAWgIR0CTkfbTMJQddX2UKGgGR0BtgQ/s3Q2NaAdNIQFoCEdAk5KOu/1xsHV9lChoBkdAXTJBfKISDmgHTegDaAhHQJOS08EFGG51fZQoaAZHQGOM5BC2MKloB03oA2gIR0CTkwIHTqjadWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 252, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4RDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4RDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "system_info": {"OS": "Linux-5.15.90.1-microsoft-standard-WSL2-x86_64-with-glibc2.29 # 1 SMP Fri Jan 27 02:56:13 UTC 2023", "Python": "3.8.10", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu117", "GPU Enabled": "True", "Numpy": "1.24.3", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.26.2"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f64382f4670>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f64382f4700>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f64382f4790>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f64382f4820>", "_build": "<function ActorCriticPolicy._build at 0x7f64382f48b0>", "forward": "<function ActorCriticPolicy.forward at 0x7f64382f4940>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f64382f49d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f64382f4a60>", "_predict": "<function ActorCriticPolicy._predict at 0x7f64382f4af0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f64382f4b80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f64382f4c10>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f64382f4ca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f64382ef8a0>"}, "verbose": 0, "policy_kwargs": {}, "num_timesteps": 30015488, "_total_timesteps": 30000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690724918561427173, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADM2Er4aHns+e9PrPnNKL79ngiI85iGTPgAAAAAAAAAAZsqbPf5PnT7bVUu+t4Yov0ouED4zCUW+AAAAAAAAAABNEHK9yeA/PjhutTs+pgm/fEwGvjUu6LwAAAAAAAAAAMA7Ab4J6hQ/ZO+kPEpAPL/1JJK+ZgUXPgAAAAAAAAAA5pt3vcG1gT4Aft8976cxv7LUk7369ZY9AAAAAAAAAADNrHy6UvKWu8DK+TzgRyc9ltBYvCj3HjsAAIA/AACAP4C+AD0WcqM/1p1cPm5PHr++nZM9TSRGPgAAAAAAAAAAM/WaPOHelrrj8LO88lntN7fXJbuzdlK3AACAPwAAgD9TRC0++1fEPh4QZb5k+Tq/RUu/Pm3Fnr4AAAAAAAAAALORLb1w27s/G+78vi/YYz7NceS7GAshvgAAAAAAAAAA5oRhvULtaD/YxOK9htNjv16JXr2iJvC9AAAAAAAAAACaysY82MKcP1pFkz3RhC2/5EEfPoJwpT0AAAAAAAAAAADuVT1qaok+fqg2vkOIKL80SLI9M8xjvgAAAAAAAAAABmZHvm+eIT9IFF28dpwXv9LL5r5t4+I9AAAAAAAAAADAr3q+2zqZP5Zorb4WXCC/2Kslv8JZw70AAAAAAAAAALP6Gz3fZaA/a9ghPurhGb+7SA4++p5KPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0005162666666667093, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHMwW5paibmMAWyUS62MAXSUR0DRxaumygPFdX2UKGgGR0Bxs0B3iaRZaAdLt2gIR0DRxazPLPlddX2UKGgGR0BxJf9P1tfpaAdLoGgIR0DRxbGy/sVtdX2UKGgGR0BzUA/xDst1aAdLr2gIR0DRxbH/BFd+dX2UKGgGR0BzYEG1QZXNaAdLnmgIR0DRxbPqVyFPdX2UKGgGR0BzVOdqcmShaAdLsGgIR0DRxbq4tpVTdX2UKGgGR0Bw9PxqfvnbaAdLnWgIR0DRxcOqMm4RdX2UKGgGR0BzQkjPfKp2aAdLrWgIR0DRxc2us90SdX2UKGgGR0B0IGM0gr6MaAdLuWgIR0DRxdCzVtoBdX2UKGgGR0ByvyXpnpSraAdLrmgIR0DRxdFfzBhydX2UKGgGR0BycXK4hEBsaAdLqWgIR0DRxdJx4ptrdX2UKGgGR0By29EBsANoaAdLs2gIR0DRxdQp7TlUdX2UKGgGR0BxICBEroW6aAdLnmgIR0DRxdPRVp9JdX2UKGgGR0Bxzu5kK/mDaAdLoGgIR0DRxdYQFs55dX2UKGgGR0Bxp30ulGgBaAdLk2gIR0DRxddtgrpadX2UKGgGR0BysnQqqfe2aAdLmGgIR0DRxdentOVPdX2UKGgGR0ByYutzS1E3aAdLvmgIR0DRxdkVGkN4dX2UKGgGR0ByZiFDfFaTaAdLumgIR0DRxdnmdRR/dX2UKGgGR0Bx1QVGkN4JaAdLrGgIR0DRxeMtf5UMdX2UKGgGR0Bw/F38n/kvaAdLsmgIR0DRxeSqdYnwdX2UKGgGR0ByKEi3XqZ/aAdLrGgIR0DRxeWfthNNdX2UKGgGR0BwJXX18LKFaAdLk2gIR0DRxe0EgW8AdX2UKGgGR0Bx9s1R+BpYaAdLg2gIR0DRxfJprULEdX2UKGgGR0B0yWx2St/4aAdL1mgIR0DRxfpwo9cKdX2UKGgGR0BxuOhufmLcaAdLp2gIR0DRxgGZH/cWdX2UKGgGR0BxcNXLeQ+2aAdLpGgIR0DRxgF/EwWWdX2UKGgGR0BzCcidJ8OTaAdLpmgIR0DRxgM1DSgHdX2UKGgGR0ByNOEEkjX4aAdLm2gIR0DRxgPQQcxTdX2UKGgGR0Byg1H5JsfraAdLsmgIR0DRxgipBHCodX2UKGgGR0Byaa1kUbkwaAdLp2gIR0DRxgmkhzNmdX2UKGgGR0B0KPP6be/IaAdLtmgIR0DRxgpjawljdX2UKGgGR0BznzVoYekpaAdLsmgIR0DRxgzLKV6edX2UKGgGR0BykAr1/Ue/aAdLrGgIR0DRxg5mOEM9dX2UKGgGR0Bz9ObtqpLmaAdLrmgIR0DRxg4sqaw2dX2UKGgGR0Bx2MWCVbA2aAdLrmgIR0DRxhlUT+NtdX2UKGgGR0ByKRSQ5myxaAdLrmgIR0DRxhq59Vm0dX2UKGgGR0BynMzch1TzaAdLq2gIR0DRxhq4+bExdX2UKGgGR0ByEBtl7MPjaAdLpWgIR0DRxiCiJwbVdX2UKGgGR0BxLukEcKgJaAdLoGgIR0DRxiRlTWGzdX2UKGgGR0By0BJ17pmmaAdLiGgIR0DRxisnH/96dX2UKGgGR0Bw9iPwNLDiaAdLomgIR0DRxix/XoTxdX2UKGgGR0BykN4lhPTHaAdLoWgIR0DRxjUh/y5JdX2UKGgGR0BzdyOS4e90aAdLtGgIR0DRxjj0se4kdX2UKGgGR0ByEQqFyq+8aAdLsmgIR0DRxjoWepXIdX2UKGgGR0ByoA9ECvHMaAdLnWgIR0DRxjrFefI0dX2UKGgGR0Bw7KE384xUaAdLlGgIR0DRxjuJYT0ydX2UKGgGR0BywaRr8BMjaAdLm2gIR0DRxj4EOiFkdX2UKGgGR0BzcT6InBtUaAdLpGgIR0DRxj9P1tfpdX2UKGgGR0Bx/H2bobGWaAdLrGgIR0DRxj7U7Sy/dX2UKGgGR0Byhzafzz3AaAdLfmgIR0DRxkDdl/YrdX2UKGgGR0BynRn7HhjwaAdLvGgIR0DRxkLoTwlTdX2UKGgGR0BxmvcDbJwLaAdLhWgIR0DRxkRghKUWdX2UKGgGR0Bwbj9P1tfpaAdLiWgIR0DRxk3aews5dX2UKGgGR0Bxp4ihWYF8aAdLnGgIR0DRxlgCxNZedX2UKGgGR0Bzw92q1gIAaAdLu2gIR0DRxlf/n4fwdX2UKGgGR0BycnqeK8+SaAdLpWgIR0DRxmOKP4mDdX2UKGgGR0BzcPH3lCC0aAdLt2gIR0DRxmjq/ub7dX2UKGgGR0Bx12/7BO58aAdLjmgIR0DRxmsR5C4SdX2UKGgGR0BwwpvjwQUYaAdLpGgIR0DRxm2NaQmvdX2UKGgGR0BxV/zpX6qLaAdLh2gIR0DRxm457w8XdX2UKGgGR0Bxk55D7ZWaaAdLmWgIR0DRxm9P1tfpdX2UKGgGR0ByxB9nbqQjaAdLn2gIR0DRxm+WqtHQdX2UKGgGR0ByuaX0Gu9waAdLnWgIR0DRxnPdpItldX2UKGgGR0BzoD3g1m8NaAdLq2gIR0DRxnW3XqZ/dX2UKGgGR0BzSmk0rK/3aAdLrGgIR0DRxnkWl/H6dX2UKGgGR0Bxm3pt78ekaAdLoGgIR0DRxnlpoK2KdX2UKGgGR0Byn5UR3/xUaAdLwGgIR0DRxoCS5iEydX2UKGgGR0Bza1oFmnO0aAdLumgIR0DRxoJA9mpVdX2UKGgGR0BwankQwsXjaAdLnWgIR0DRxomdc0LudX2UKGgGR0BzrSlMyrPuaAdLu2gIR0DRxomSzPa+dX2UKGgGR0BzLfKT0QK8aAdLsmgIR0DRxpBmlImPdX2UKGgGR0ByNW1E3KjjaAdLiGgIR0DRxpfDej20dX2UKGgGR0Bw1P1WbPQfaAdLhmgIR0DRxpzmfXf7dX2UKGgGR0By3CxeLNwBaAdLuGgIR0DRxp2+Eh7mdX2UKGgGR0Bx7o9Mbm2caAdLomgIR0DRxp+eYlY2dX2UKGgGR0BvovRRdhRZaAdLqmgIR0DRxp/79AHFdX2UKGgGR0BxPLeO4oZyaAdLomgIR0DRxqGADq4ZdX2UKGgGR0By5WQxN7BwaAdLtGgIR0DRxqFAVwgldX2UKGgGR0Bwt3FNtZV5aAdLiGgIR0DRxqM9ZA6ddX2UKGgGR0BzdIwnH/96aAdLrmgIR0DRxqVSqEOBdX2UKGgGR0BwtTw6QvHtaAdLmWgIR0DRxqiG1x82dX2UKGgGR0By6SWRigCfaAdLsWgIR0DRxqsL5RCQdX2UKGgGR0ByWv8IiTt+aAdLkGgIR0DRxq4baRISdX2UKGgGR0BzIYa86FM7aAdLomgIR0DRxrH0btJGdX2UKGgGR0BwCqZw4sEraAdLk2gIR0DRxrcAiml7dX2UKGgGR0Bzo9hDw6QvaAdLsmgIR0DRxsMAksz3dX2UKGgGR0BxrZhMJx//aAdLlWgIR0DRxsdY/3WXdX2UKGgGR0Bya0lRgqmTaAdLs2gIR0DRxsngEU0vdX2UKGgGR0Bwk1OHnEEUaAdLjmgIR0DRxs0vQF9sdX2UKGgGR0B0ZPFdcB2faAdLomgIR0DRxtMGHHmzdX2UKGgGR0BxuzWy1NQCaAdLqWgIR0DRxtLIp6QedX2UKGgGR0BxQKTW5H3DaAdLl2gIR0DRxtNIK+i8dX2UKGgGR0Bxi90vGp++aAdLoWgIR0DRxtShzvJBdX2UKGgGR0Byc4Dq4YrKaAdLsWgIR0DRxtYWqLjxdX2UKGgGR0BzCs5lvqC6aAdLoGgIR0DRxtfjkuHvdX2UKGgGR0Bz+pEd/8VIaAdLvGgIR0DRxtuKsMiKdX2UKGgGR0BxxLb5/LDAaAdLpGgIR0DRxtu4d6sydX2UKGgGR0Bx2K/VRUFTaAdLpGgIR0DRxt6KHfuUdX2UKGgGR0ByQHFVDKHPaAdLo2gIR0DRxuELG7z1dX2UKGgGR0BwDGI68xsVaAdLm2gIR0DRxuJLDhtMdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 7328, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4RDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4RDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "system_info": {"OS": "Linux-5.15.90.1-microsoft-standard-WSL2-x86_64-with-glibc2.29 # 1 SMP Fri Jan 27 02:56:13 UTC 2023", "Python": "3.8.10", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu117", "GPU Enabled": "True", "Numpy": "1.24.3", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.26.2"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:915ec8ec2ca13e84964fa7042ff9c6117d7eb241f60784651bfbd160fbf16158
|
3 |
+
size 146133
|
ppo-LunarLander-v2/data
CHANGED
@@ -4,34 +4,34 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc_data object at
|
21 |
},
|
22 |
-
"verbose":
|
23 |
"policy_kwargs": {},
|
24 |
-
"num_timesteps":
|
25 |
-
"_total_timesteps":
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
-
"start_time":
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
-
":serialized:": "
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -41,17 +41,17 @@
|
|
41 |
"_episode_num": 0,
|
42 |
"use_sde": false,
|
43 |
"sde_sample_freq": -1,
|
44 |
-
"_current_progress_remaining": -0.
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
-
":serialized:": "
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
},
|
54 |
-
"_n_updates":
|
55 |
"observation_space": {
|
56 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f64382f4670>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f64382f4700>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f64382f4790>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f64382f4820>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f64382f48b0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f64382f4940>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f64382f49d0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f64382f4a60>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f64382f4af0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f64382f4b80>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f64382f4c10>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f64382f4ca0>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f64382ef8a0>"
|
21 |
},
|
22 |
+
"verbose": 0,
|
23 |
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 30015488,
|
25 |
+
"_total_timesteps": 30000000,
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
+
"start_time": 1690724918561427173,
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADM2Er4aHns+e9PrPnNKL79ngiI85iGTPgAAAAAAAAAAZsqbPf5PnT7bVUu+t4Yov0ouED4zCUW+AAAAAAAAAABNEHK9yeA/PjhutTs+pgm/fEwGvjUu6LwAAAAAAAAAAMA7Ab4J6hQ/ZO+kPEpAPL/1JJK+ZgUXPgAAAAAAAAAA5pt3vcG1gT4Aft8976cxv7LUk7369ZY9AAAAAAAAAADNrHy6UvKWu8DK+TzgRyc9ltBYvCj3HjsAAIA/AACAP4C+AD0WcqM/1p1cPm5PHr++nZM9TSRGPgAAAAAAAAAAM/WaPOHelrrj8LO88lntN7fXJbuzdlK3AACAPwAAgD9TRC0++1fEPh4QZb5k+Tq/RUu/Pm3Fnr4AAAAAAAAAALORLb1w27s/G+78vi/YYz7NceS7GAshvgAAAAAAAAAA5oRhvULtaD/YxOK9htNjv16JXr2iJvC9AAAAAAAAAACaysY82MKcP1pFkz3RhC2/5EEfPoJwpT0AAAAAAAAAAADuVT1qaok+fqg2vkOIKL80SLI9M8xjvgAAAAAAAAAABmZHvm+eIT9IFF28dpwXv9LL5r5t4+I9AAAAAAAAAADAr3q+2zqZP5Zorb4WXCC/2Kslv8JZw70AAAAAAAAAALP6Gz3fZaA/a9ghPurhGb+7SA4++p5KPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
41 |
"_episode_num": 0,
|
42 |
"use_sde": false,
|
43 |
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.0005162666666667093,
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHMwW5paibmMAWyUS62MAXSUR0DRxaumygPFdX2UKGgGR0Bxs0B3iaRZaAdLt2gIR0DRxazPLPlddX2UKGgGR0BxJf9P1tfpaAdLoGgIR0DRxbGy/sVtdX2UKGgGR0BzUA/xDst1aAdLr2gIR0DRxbH/BFd+dX2UKGgGR0BzYEG1QZXNaAdLnmgIR0DRxbPqVyFPdX2UKGgGR0BzVOdqcmShaAdLsGgIR0DRxbq4tpVTdX2UKGgGR0Bw9PxqfvnbaAdLnWgIR0DRxcOqMm4RdX2UKGgGR0BzQkjPfKp2aAdLrWgIR0DRxc2us90SdX2UKGgGR0B0IGM0gr6MaAdLuWgIR0DRxdCzVtoBdX2UKGgGR0ByvyXpnpSraAdLrmgIR0DRxdFfzBhydX2UKGgGR0BycXK4hEBsaAdLqWgIR0DRxdJx4ptrdX2UKGgGR0By29EBsANoaAdLs2gIR0DRxdQp7TlUdX2UKGgGR0BxICBEroW6aAdLnmgIR0DRxdPRVp9JdX2UKGgGR0Bxzu5kK/mDaAdLoGgIR0DRxdYQFs55dX2UKGgGR0Bxp30ulGgBaAdLk2gIR0DRxddtgrpadX2UKGgGR0BysnQqqfe2aAdLmGgIR0DRxdentOVPdX2UKGgGR0ByYutzS1E3aAdLvmgIR0DRxdkVGkN4dX2UKGgGR0ByZiFDfFaTaAdLumgIR0DRxdnmdRR/dX2UKGgGR0Bx1QVGkN4JaAdLrGgIR0DRxeMtf5UMdX2UKGgGR0Bw/F38n/kvaAdLsmgIR0DRxeSqdYnwdX2UKGgGR0ByKEi3XqZ/aAdLrGgIR0DRxeWfthNNdX2UKGgGR0BwJXX18LKFaAdLk2gIR0DRxe0EgW8AdX2UKGgGR0Bx9s1R+BpYaAdLg2gIR0DRxfJprULEdX2UKGgGR0B0yWx2St/4aAdL1mgIR0DRxfpwo9cKdX2UKGgGR0BxuOhufmLcaAdLp2gIR0DRxgGZH/cWdX2UKGgGR0BxcNXLeQ+2aAdLpGgIR0DRxgF/EwWWdX2UKGgGR0BzCcidJ8OTaAdLpmgIR0DRxgM1DSgHdX2UKGgGR0ByNOEEkjX4aAdLm2gIR0DRxgPQQcxTdX2UKGgGR0Byg1H5JsfraAdLsmgIR0DRxgipBHCodX2UKGgGR0Byaa1kUbkwaAdLp2gIR0DRxgmkhzNmdX2UKGgGR0B0KPP6be/IaAdLtmgIR0DRxgpjawljdX2UKGgGR0BznzVoYekpaAdLsmgIR0DRxgzLKV6edX2UKGgGR0BykAr1/Ue/aAdLrGgIR0DRxg5mOEM9dX2UKGgGR0Bz9ObtqpLmaAdLrmgIR0DRxg4sqaw2dX2UKGgGR0Bx2MWCVbA2aAdLrmgIR0DRxhlUT+NtdX2UKGgGR0ByKRSQ5myxaAdLrmgIR0DRxhq59Vm0dX2UKGgGR0BynMzch1TzaAdLq2gIR0DRxhq4+bExdX2UKGgGR0ByEBtl7MPjaAdLpWgIR0DRxiCiJwbVdX2UKGgGR0BxLukEcKgJaAdLoGgIR0DRxiRlTWGzdX2UKGgGR0By0BJ17pmmaAdLiGgIR0DRxisnH/96dX2UKGgGR0Bw9iPwNLDiaAdLomgIR0DRxix/XoTxdX2UKGgGR0BykN4lhPTHaAdLoWgIR0DRxjUh/y5JdX2UKGgGR0BzdyOS4e90aAdLtGgIR0DRxjj0se4kdX2UKGgGR0ByEQqFyq+8aAdLsmgIR0DRxjoWepXIdX2UKGgGR0ByoA9ECvHMaAdLnWgIR0DRxjrFefI0dX2UKGgGR0Bw7KE384xUaAdLlGgIR0DRxjuJYT0ydX2UKGgGR0BywaRr8BMjaAdLm2gIR0DRxj4EOiFkdX2UKGgGR0BzcT6InBtUaAdLpGgIR0DRxj9P1tfpdX2UKGgGR0Bx/H2bobGWaAdLrGgIR0DRxj7U7Sy/dX2UKGgGR0Byhzafzz3AaAdLfmgIR0DRxkDdl/YrdX2UKGgGR0BynRn7HhjwaAdLvGgIR0DRxkLoTwlTdX2UKGgGR0BxmvcDbJwLaAdLhWgIR0DRxkRghKUWdX2UKGgGR0Bwbj9P1tfpaAdLiWgIR0DRxk3aews5dX2UKGgGR0Bxp4ihWYF8aAdLnGgIR0DRxlgCxNZedX2UKGgGR0Bzw92q1gIAaAdLu2gIR0DRxlf/n4fwdX2UKGgGR0BycnqeK8+SaAdLpWgIR0DRxmOKP4mDdX2UKGgGR0BzcPH3lCC0aAdLt2gIR0DRxmjq/ub7dX2UKGgGR0Bx12/7BO58aAdLjmgIR0DRxmsR5C4SdX2UKGgGR0BwwpvjwQUYaAdLpGgIR0DRxm2NaQmvdX2UKGgGR0BxV/zpX6qLaAdLh2gIR0DRxm457w8XdX2UKGgGR0Bxk55D7ZWaaAdLmWgIR0DRxm9P1tfpdX2UKGgGR0ByxB9nbqQjaAdLn2gIR0DRxm+WqtHQdX2UKGgGR0ByuaX0Gu9waAdLnWgIR0DRxnPdpItldX2UKGgGR0BzoD3g1m8NaAdLq2gIR0DRxnW3XqZ/dX2UKGgGR0BzSmk0rK/3aAdLrGgIR0DRxnkWl/H6dX2UKGgGR0Bxm3pt78ekaAdLoGgIR0DRxnlpoK2KdX2UKGgGR0Byn5UR3/xUaAdLwGgIR0DRxoCS5iEydX2UKGgGR0Bza1oFmnO0aAdLumgIR0DRxoJA9mpVdX2UKGgGR0BwankQwsXjaAdLnWgIR0DRxomdc0LudX2UKGgGR0BzrSlMyrPuaAdLu2gIR0DRxomSzPa+dX2UKGgGR0BzLfKT0QK8aAdLsmgIR0DRxpBmlImPdX2UKGgGR0ByNW1E3KjjaAdLiGgIR0DRxpfDej20dX2UKGgGR0Bw1P1WbPQfaAdLhmgIR0DRxpzmfXf7dX2UKGgGR0By3CxeLNwBaAdLuGgIR0DRxp2+Eh7mdX2UKGgGR0Bx7o9Mbm2caAdLomgIR0DRxp+eYlY2dX2UKGgGR0BvovRRdhRZaAdLqmgIR0DRxp/79AHFdX2UKGgGR0BxPLeO4oZyaAdLomgIR0DRxqGADq4ZdX2UKGgGR0By5WQxN7BwaAdLtGgIR0DRxqFAVwgldX2UKGgGR0Bwt3FNtZV5aAdLiGgIR0DRxqM9ZA6ddX2UKGgGR0BzdIwnH/96aAdLrmgIR0DRxqVSqEOBdX2UKGgGR0BwtTw6QvHtaAdLmWgIR0DRxqiG1x82dX2UKGgGR0By6SWRigCfaAdLsWgIR0DRxqsL5RCQdX2UKGgGR0ByWv8IiTt+aAdLkGgIR0DRxq4baRISdX2UKGgGR0BzIYa86FM7aAdLomgIR0DRxrH0btJGdX2UKGgGR0BwCqZw4sEraAdLk2gIR0DRxrcAiml7dX2UKGgGR0Bzo9hDw6QvaAdLsmgIR0DRxsMAksz3dX2UKGgGR0BxrZhMJx//aAdLlWgIR0DRxsdY/3WXdX2UKGgGR0Bya0lRgqmTaAdLs2gIR0DRxsngEU0vdX2UKGgGR0Bwk1OHnEEUaAdLjmgIR0DRxs0vQF9sdX2UKGgGR0B0ZPFdcB2faAdLomgIR0DRxtMGHHmzdX2UKGgGR0BxuzWy1NQCaAdLqWgIR0DRxtLIp6QedX2UKGgGR0BxQKTW5H3DaAdLl2gIR0DRxtNIK+i8dX2UKGgGR0Bxi90vGp++aAdLoWgIR0DRxtShzvJBdX2UKGgGR0Byc4Dq4YrKaAdLsWgIR0DRxtYWqLjxdX2UKGgGR0BzCs5lvqC6aAdLoGgIR0DRxtfjkuHvdX2UKGgGR0Bz+pEd/8VIaAdLvGgIR0DRxtuKsMiKdX2UKGgGR0BxxLb5/LDAaAdLpGgIR0DRxtu4d6sydX2UKGgGR0Bx2K/VRUFTaAdLpGgIR0DRxt6KHfuUdX2UKGgGR0ByQHFVDKHPaAdLo2gIR0DRxuELG7z1dX2UKGgGR0BwDGI68xsVaAdLm2gIR0DRxuJLDhtMdWUu"
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
},
|
54 |
+
"_n_updates": 7328,
|
55 |
"observation_space": {
|
56 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 87545
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1ffd7b619b27001a694f1863811409924c1058bbd982fed887803561fd3d20f1
|
3 |
size 87545
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43201
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:58ee02a10a81716166bd4c7e5b09c76ac3eaf9e5ef5a73cbdf7167af87b6a08e
|
3 |
size 43201
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 282.4266053, "std_reward": 17.250184434611892, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-30T18:51:04.519861"}
|