{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f0806e7e4e0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 16384, "_total_timesteps": 100, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690722213996335373, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAFp4Tz7jaHg/PiJHP1nCab/dY8y+uuy6vgAAAAAAAAAAAOjDvKy6tD8ciEC+zpPqu/Rwmbwwktm9AAAAAAAAAACzamk9u6KuPyTwCj6quqW+0e6uveMJOL4AAAAAAAAAAOa/bT3BbqQ/niy8PlSv3r78eaO9Cl3KvAAAAAAAAAAAs9hEPS9a1z8i6gA+i/4EPS2gjb0Cnz+9AAAAAAAAAABmDrI74pu8P6TsjD1qWTQ+xEJBvXeHA74AAAAAAAAAAIDwSr4ynnk/AeMHv5G0PL/p+rI++MC1PgAAAAAAAAAAJoDCvQYhnj8kU5O+vckJv17aej7jhbE9AAAAAAAAAABmNug7YHa8P+Mr3j0i+Y2+lDzavm3Vzb4AAAAAAAAAAP2ixT649gk/c9x2P1yJgr85/gO/FRg2vgAAAAAAAAAA+l/Rvp62xT2RYAG/Ch2FvipqCkCi5B5AAAAAAAAAAADNDfK8YZG0P5bI+r6Gxa28mL5IPA0AGToAAAAAAAAAAGAIUz4LIhc/mlILP7WpkL/ahmS/DWTqvgAAAAAAAAAAulQUPj4LND+fTwE/gheGv3Nzer70zz6+AAAAAAAAAAAzG6Y7PqHJP441SjwPb4Q9odbbvdMn0r0AAAAAAAAAALI6kL4I3MI+h5YdvwJbn7+/D9w+MiGXvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -162.84, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwHbmWmYSg5CMAWyUS1yMAXSUR0At4BEKE385dX2UKGgGR8BTY+Aqd6LPaAdLe2gIR0At60SAYpDvdX2UKGgGR8B369eVs1sMaAdLaGgIR0AuBkLhJiAldX2UKGgGR8BkKNjwx33YaAdLQmgIR0AuBQdjoZAIdX2UKGgGR8BnE5VuJk5IaAdLZmgIR0AuFvwVj7Q+dX2UKGgGR8Bj2RTZQHiWaAdLZWgIR0AuHcTrVvuPdX2UKGgGR8BnKjK7qY7aaAdLVWgIR0AuMFTNt65YdX2UKGgGR8BSbU4FRpDeaAdLO2gIR0AuTHJ9y926dX2UKGgGR8B1NEq/dqL1aAdLgGgIR0AudLCemNzbdX2UKGgGR8BWOWKyfL9uaAdLQ2gIR0AudFlTWGypdX2UKGgGR8BhkfryDqW1aAdLZmgIR0AudtKqXF98dX2UKGgGR8BXd4eT3Zf2aAdLT2gIR0AufWdVea8ZdX2UKGgGR8Bp8J+F10T2aAdLUWgIR0AugI3zcynDdX2UKGgGR8B7rN07r9l3aAdLbmgIR0AuhxyXD3uedX2UKGgGR8Bx67V7Qb++aAdLVmgIR0AukXP7el9CdX2UKGgGR8BiJ8Z9/jKgaAdLXmgIR0Auk25QP7N0dX2UKGgGR8A5fPY4ACGOaAdLZWgIR0Aup4+r2g3+dX2UKGgGR8BhVuALApKBaAdLRmgIR0AurVBlcyFgdX2UKGgGR8BtYIYP5HmSaAdLVmgIR0Aut8PWhAW0dX2UKGgGR8BTSA6ySmqHaAdLV2gIR0AuzU6xPfsNdX2UKGgGR8BZDeObRWtEaAdLfWgIR0Au2uIyj59FdX2UKGgGR8Be0nRXwLE2aAdLVmgIR0AvC3XI2fkFdX2UKGgGR8Bko/EAHVwxaAdLQWgIR0AvCwosqaw2dX2UKGgGR8B590tnPE88aAdLemgIR0AvD9lVcUuddX2UKGgGR8BRM37cfvF4aAdLRGgIR0AvF6Tnq3VkdX2UKGgGR8BeZ3jABT4taAdLSWgIR0AvIx9oexOddX2UKGgGR8B3m20qpcX4aAdLdmgIR0AvPgLJCBwudX2UKGgGR8B14x8zAN5MaAdLVWgIR0AvYhEBsANodX2UKGgGR8BWyH9vS+g2aAdLZ2gIR0AvejWTX8O1dX2UKGgGR8BvZYEt/WlNaAdLamgIR0AvedIXj2i+dX2UKGgGR8B06nZTQ3PzaAdLaWgIR0Avi/FirksCdX2UKGgGR8BpzMjLSuyNaAdLWGgIR0AvjXuE25xzdX2UKGgGR8BjVCeumrKeaAdLdGgIR0AvjXxvvSc9dX2UKGgGR8BXONkJ8fFKaAdLTWgIR0Avinm7rcCYdX2UKGgGR8BqtaLhrFfiaAdLZ2gIR0AvnjJ+2E00dX2UKGgGR8BXvO+IuXeFaAdLSWgIR0AvswkgOjIrdX2UKGgGR8BUgd/OMVDbaAdLSmgIR0Avv9zfaYeDdX2UKGgGR8BYuddu5z5oaAdLfmgIR0Avybm2b5M2dX2UKGgGR8BvzpI+W4ViaAdLWGgIR0Avz8D0UXYUdX2UKGgGR8B2B/QiRnvlaAdLXWgIR0Av3Hd43WFwdX2UKGgGR8BgDLHXEqDsaAdLdGgIR0Av5s0pEx7BdX2UKGgGR8Bt5YBzV+ZxaAdLZ2gIR0Av+ORT0g8sdX2UKGgGR8Bir8QwsXizaAdLXWgIR0AwAnOSntOVdX2UKGgGR8BiQ/mxMWXUaAdLU2gIR0AwCLHdXT3JdX2UKGgGR8Bein9rGipOaAdLQ2gIR0AwCkrPMSsbdX2UKGgGR8BdxXfQ8fV7aAdLU2gIR0AwEnV5KODKdX2UKGgGR8BWvQVj7Q9iaAdLQGgIR0AwHIAOrhitdX2UKGgGR8BcxK2WpqASaAdLXmgIR0AwJbqhUR4AdX2UKGgGR8B56VO6/ZdwaAdLaWgIR0AwKa0hNdqtdX2UKGgGR8BgPLdi2DxtaAdLeGgIR0AwQHGS6lLwdX2UKGgGR8BgsjCxeLNwaAdLcGgIR0AwQ1PFefI0dX2UKGgGR8BYNQq3EyckaAdLQ2gIR0AwRf5DZ13ddX2UKGgGR8By28ikfs/qaAdLYWgIR0AwTLuhK15TdX2UKGgGR8B1dh0eU6geaAdLhWgIR0AwT7oB7u2JdX2UKGgGR8Bgadkc0cfeaAdLX2gIR0AwUS7oSteVdX2UKGgGR8Bbkd8qnWJ8aAdLYmgIR0AwWEYwZflZdX2UKGgGR8B1ygOEug6EaAdLcmgIR0AwW1Q66reZdX2UKGgGR8Bgp9waR6njaAdLWWgIR0AwY1QqI7/5dX2UKGgGR8BSwvXXiBGyaAdLQGgIR0AwaLq2SdOJdX2UKGgGR8BRUCl3yI56aAdLT2gIR0Awb4vN/vv0dX2UKGgGR8B2LZ5hScbzaAdLZGgIR0AwcYRujynUdX2UKGgGR8BZpMKCxu89aAdLWmgIR0AwcPzFuNxVdX2UKGgGR8BCg5qubI91aAdLlGgIR0AweqMFUyYYdX2UKGgGR8BbetVrAP/aaAdLfmgIR0AwfRkVeruIdX2UKGgGR8BbOovvjOs1aAdLPWgIR0Awg+717IDHdX2UKGgGR8Bcgh/y5I6KaAdLWWgIR0AwhKHwgDA8dX2UKGgGR8BdtrY9Pk7waAdLRGgIR0AwkuAZsKsudX2UKGgGR8Bc9aUmlZX/aAdLUWgIR0Awk287IT4+dX2UKGgGR8BR01fJFLFoaAdLSGgIR0AwksvqTr3TdX2UKGgGR8Bo4J2B8QZoaAdLWGgIR0AwmAjY7JXAdX2UKGgGR8BJHSOaOPvKaAdLQWgIR0AwrmZVn27GdX2UKGgGR8B2hjZQHiWFaAdLXmgIR0AwtI1tO2y+dX2UKGgGR8BYTRHoX9BKaAdLRmgIR0Aws7ulXRw7dX2UKGgGR8BtCyW3Sa3JaAdLamgIR0AwuE7GNrCWdX2UKGgGR8BvvieCkGiYaAdLZGgIR0AwvncL0BfbdX2UKGgGR8BYa7kbPyCnaAdLWmgIR0AwwSOinHeadX2UKGgGR8BpnYYLsruqaAdLVGgIR0AwwYrrgOz6dX2UKGgGR8Bd0nLmp2lmaAdLbGgIR0AwzmtyPuG9dX2UKGgGR8BKjvY4ACGOaAdLP2gIR0Aw01ZkkKNRdX2UKGgGR8BgU+wcHWz4aAdLVmgIR0Aw2hfBvaUSdX2UKGgGR8BjPZnrY5DJaAdLQ2gIR0Aw3S2H+IdmdX2UKGgGR8Bu+gXoC+10aAdLbGgIR0Aw6Ca7VawEdX2UKGgGR8BnBcifQKKHaAdLbmgIR0Aw85jYqXnhdX2UKGgGR8BgVJ4nndO7aAdLYmgIR0Aw+BBAv+OwdX2UKGgGR8BhOrl1bJOnaAdLe2gIR0Aw9d+5OJtSdX2UKGgGR8BX4NR77bcoaAdLT2gIR0AxAFA3T/hmdX2UKGgGR8BX4JUkv9LpaAdLUGgIR0AxCJ53Tuv2dX2UKGgGR8Bc57QTmGM5aAdLWmgIR0AxDjW07bL2dX2UKGgGR8BgWck0Jng6aAdLPmgIR0AxD2H+IdlvdX2UKGgGR8Bg+T2WY4Q0aAdLX2gIR0AxEkNnXd0rdX2UKGgGR8BZ94FJQLuyaAdLVmgIR0AxFmvnr6cidX2UKGgGR8BXfcghbGFSaAdLgmgIR0AxFmuDBdledX2UKGgGR8BiBumBOHnEaAdLY2gIR0AxIBoVVPvbdX2UKGgGR8BepKqGUOd5aAdLOmgIR0AxH/82rGR3dX2UKGgGR8BzWZSzgMtsaAdLWWgIR0AxJh8YyfthdX2UKGgGR8BykEFxGUfQaAdLbWgIR0AxLY2Kl54XdX2UKGgGR8Bv8PuAqd6LaAdLXmgIR0AxOzUqhDgJdX2UKGgGR8BZ0fR7Z39raAdLSWgIR0AxQM/QjUutdX2UKGgGR8BX3yhzvJA/aAdLZmgIR0AxQZqmCROldX2UKGgGR8BBA33QD3dsaAdLUWgIR0AxRUyHmA9WdWUu"}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 4, "observation_space": {":type:": "", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4RDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4RDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "system_info": {"OS": "Linux-5.15.90.1-microsoft-standard-WSL2-x86_64-with-glibc2.29 # 1 SMP Fri Jan 27 02:56:13 UTC 2023", "Python": "3.8.10", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu117", "GPU Enabled": "True", "Numpy": "1.24.3", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.26.2"}}