Update README.md
Browse files
README.md
CHANGED
@@ -11,6 +11,27 @@ The training is based on [DiffEngine](https://github.com/okotaku/diffengine), th
|
|
11 |
|
12 |
I used [diffusers/dog-example](https://huggingface.co/datasets/diffusers/dog-example).
|
13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
# Example result
|
15 |
|
16 |
prompt = 'A photo of sks dog in a bucket'
|
|
|
11 |
|
12 |
I used [diffusers/dog-example](https://huggingface.co/datasets/diffusers/dog-example).
|
13 |
|
14 |
+
# Inference
|
15 |
+
|
16 |
+
```
|
17 |
+
import torch
|
18 |
+
from diffusers import DiffusionPipeline
|
19 |
+
|
20 |
+
checkpoint = 'takuoko/small-sd-dreambooth-lora-dog'
|
21 |
+
prompt = 'A photo of sks dog in a bucket'
|
22 |
+
|
23 |
+
pipe = DiffusionPipeline.from_pretrained(
|
24 |
+
'segmind/small-sd', torch_dtype=torch.float16)
|
25 |
+
pipe.to('cuda')
|
26 |
+
pipe.load_lora_weights(checkpoint)
|
27 |
+
|
28 |
+
image = pipe(
|
29 |
+
prompt,
|
30 |
+
num_inference_steps=50,
|
31 |
+
).images[0]
|
32 |
+
image.save('demo.png')
|
33 |
+
```
|
34 |
+
|
35 |
# Example result
|
36 |
|
37 |
prompt = 'A photo of sks dog in a bucket'
|