Diffusers
Safetensors
takuoko commited on
Commit
bbfa73b
1 Parent(s): ec7aa97

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +9 -7
README.md CHANGED
@@ -9,10 +9,6 @@ datasets:
9
  This is the example model of [Distill SDXL](https://github.com/okotaku/diffengine/tree/main/configs/distill_sd).
10
  The training is based on [DiffEngine](https://github.com/okotaku/diffengine), the open-source toolbox for training state-of-the-art Diffusion Models with diffusers and mmengine.
11
 
12
- Paper: [On Architectural Compression of Text-to-Image Diffusion Models](https://arxiv.org/abs/2305.15798)
13
-
14
- Unofficial implementation: https://github.com/segmind/distill-sd
15
-
16
  # Training
17
 
18
  ```
@@ -34,7 +30,7 @@ import torch
34
  from diffusers import DiffusionPipeline, UNet2DConditionModel, AutoencoderKL
35
 
36
  checkpoint = 'takuoko/tiny_sd_xl_pokemon_blip'
37
- prompt = 'a picture of a pink and yellow pokemon with a sword'
38
 
39
  unet = UNet2DConditionModel.from_pretrained(
40
  checkpoint, torch_dtype=torch.bfloat16
@@ -57,6 +53,12 @@ image.save('demo.png')
57
 
58
  # Example result
59
 
60
- prompt = 'a picture of a pink and yellow pokemon with a sword'
 
 
61
 
62
- ![image](demo.png)
 
 
 
 
 
9
  This is the example model of [Distill SDXL](https://github.com/okotaku/diffengine/tree/main/configs/distill_sd).
10
  The training is based on [DiffEngine](https://github.com/okotaku/diffengine), the open-source toolbox for training state-of-the-art Diffusion Models with diffusers and mmengine.
11
 
 
 
 
 
12
  # Training
13
 
14
  ```
 
30
  from diffusers import DiffusionPipeline, UNet2DConditionModel, AutoencoderKL
31
 
32
  checkpoint = 'takuoko/tiny_sd_xl_pokemon_blip'
33
+ prompt = 'a very cute looking pokemon with a hat on its head'
34
 
35
  unet = UNet2DConditionModel.from_pretrained(
36
  checkpoint, torch_dtype=torch.bfloat16
 
53
 
54
  # Example result
55
 
56
+ prompt = 'a very cute looking pokemon with a hat on its head'
57
+
58
+ ![image](demo.png)
59
 
60
+ # Reference
61
+
62
+ Paper: [On Architectural Compression of Text-to-Image Diffusion Models](https://arxiv.org/abs/2305.15798)
63
+
64
+ Unofficial implementation: https://github.com/segmind/distill-sd