tamarab commited on
Commit
22be9f5
·
1 Parent(s): b784017

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +80 -0
README.md ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - tweet_eval
7
+ metrics:
8
+ - precision
9
+ - recall
10
+ model-index:
11
+ - name: bert-emotion
12
+ results:
13
+ - task:
14
+ name: Text Classification
15
+ type: text-classification
16
+ dataset:
17
+ name: tweet_eval
18
+ type: tweet_eval
19
+ args: emotion
20
+ metrics:
21
+ - name: Precision
22
+ type: precision
23
+ value: 0.7462955517135084
24
+ - name: Recall
25
+ type: recall
26
+ value: 0.7095634380533169
27
+ ---
28
+
29
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
30
+ should probably proofread and complete it, then remove this comment. -->
31
+
32
+ # bert-emotion
33
+
34
+ This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the tweet_eval dataset.
35
+ It achieves the following results on the evaluation set:
36
+ - Loss: 1.1347
37
+ - Precision: 0.7463
38
+ - Recall: 0.7096
39
+ - Fscore: 0.7209
40
+
41
+ ## Model description
42
+
43
+ More information needed
44
+
45
+ ## Intended uses & limitations
46
+
47
+ More information needed
48
+
49
+ ## Training and evaluation data
50
+
51
+ More information needed
52
+
53
+ ## Training procedure
54
+
55
+ ### Training hyperparameters
56
+
57
+ The following hyperparameters were used during training:
58
+ - learning_rate: 5e-05
59
+ - train_batch_size: 4
60
+ - eval_batch_size: 4
61
+ - seed: 42
62
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
63
+ - lr_scheduler_type: linear
64
+ - num_epochs: 3
65
+
66
+ ### Training results
67
+
68
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | Fscore |
69
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|
70
+ | 0.8385 | 1.0 | 815 | 0.8366 | 0.7865 | 0.5968 | 0.6014 |
71
+ | 0.5451 | 2.0 | 1630 | 0.9301 | 0.7301 | 0.6826 | 0.6947 |
72
+ | 0.2447 | 3.0 | 2445 | 1.1347 | 0.7463 | 0.7096 | 0.7209 |
73
+
74
+
75
+ ### Framework versions
76
+
77
+ - Transformers 4.19.2
78
+ - Pytorch 1.11.0+cu113
79
+ - Datasets 2.2.1
80
+ - Tokenizers 0.12.1