File size: 3,485 Bytes
a743ff1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
---
license: apache-2.0
base_model: GanjinZero/biobart-v2-base
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: fine-tuned-BioBART-20-epochs
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# fine-tuned-BioBART-20-epochs

This model is a fine-tuned version of [GanjinZero/biobart-v2-base](https://huggingface.co/GanjinZero/biobart-v2-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7640
- Rouge1: 0.3185
- Rouge2: 0.1264
- Rougel: 0.2886
- Rougelsum: 0.2878
- Gen Len: 15.42

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| No log        | 1.0   | 151  | 0.7532          | 0.2    | 0.0753 | 0.1834 | 0.1844    | 13.29   |
| No log        | 2.0   | 302  | 0.7148          | 0.2593 | 0.0845 | 0.2302 | 0.2324    | 13.92   |
| No log        | 3.0   | 453  | 0.6995          | 0.2446 | 0.0856 | 0.2206 | 0.2227    | 14.49   |
| 0.724         | 4.0   | 604  | 0.6956          | 0.2926 | 0.1063 | 0.2674 | 0.2679    | 14.31   |
| 0.724         | 5.0   | 755  | 0.7029          | 0.3041 | 0.1208 | 0.2828 | 0.2829    | 14.81   |
| 0.724         | 6.0   | 906  | 0.6965          | 0.2821 | 0.1126 | 0.2611 | 0.2596    | 15.0    |
| 0.5016        | 7.0   | 1057 | 0.7097          | 0.286  | 0.1205 | 0.256  | 0.2555    | 15.0    |
| 0.5016        | 8.0   | 1208 | 0.7140          | 0.2899 | 0.1147 | 0.2643 | 0.2636    | 14.3    |
| 0.5016        | 9.0   | 1359 | 0.7191          | 0.3173 | 0.1231 | 0.2897 | 0.2917    | 14.75   |
| 0.3838        | 10.0  | 1510 | 0.7274          | 0.3115 | 0.1273 | 0.2874 | 0.2868    | 14.82   |
| 0.3838        | 11.0  | 1661 | 0.7312          | 0.3132 | 0.1294 | 0.2831 | 0.2825    | 14.97   |
| 0.3838        | 12.0  | 1812 | 0.7419          | 0.2975 | 0.1133 | 0.273  | 0.2731    | 14.98   |
| 0.3838        | 13.0  | 1963 | 0.7441          | 0.2934 | 0.1134 | 0.2683 | 0.2693    | 15.1    |
| 0.3153        | 14.0  | 2114 | 0.7490          | 0.2979 | 0.1212 | 0.2751 | 0.275     | 15.29   |
| 0.3153        | 15.0  | 2265 | 0.7536          | 0.2981 | 0.1125 | 0.2691 | 0.2687    | 14.83   |
| 0.3153        | 16.0  | 2416 | 0.7564          | 0.2989 | 0.1094 | 0.2719 | 0.2719    | 15.3    |
| 0.2646        | 17.0  | 2567 | 0.7585          | 0.298  | 0.1128 | 0.2745 | 0.2748    | 15.21   |
| 0.2646        | 18.0  | 2718 | 0.7630          | 0.2941 | 0.1092 | 0.2653 | 0.2651    | 15.12   |
| 0.2646        | 19.0  | 2869 | 0.7632          | 0.298  | 0.11   | 0.2681 | 0.2681    | 15.25   |
| 0.2428        | 20.0  | 3020 | 0.7640          | 0.3185 | 0.1264 | 0.2886 | 0.2878    | 15.42   |


### Framework versions

- Transformers 4.36.2
- Pytorch 1.12.1+cu113
- Datasets 2.15.0
- Tokenizers 0.15.0