tokenizer
Browse files- merges.txt +0 -0
- scripts/TRAIN.md +1 -0
- requirements.in → scripts/requirements.in +0 -0
- scripts/train_tokenizer.py +107 -51
- special_tokens_map.json +6 -0
- tokenizer.json +0 -0
- tokenizer_config.json +526 -0
- vocab.json +0 -0
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
scripts/TRAIN.md
CHANGED
@@ -3,6 +3,7 @@
|
|
3 |
## Environment
|
4 |
|
5 |
```bash
|
|
|
6 |
python -m venv venv
|
7 |
source venv/bin/activate
|
8 |
pip install -U -r requirements.in
|
|
|
3 |
## Environment
|
4 |
|
5 |
```bash
|
6 |
+
cd scripts
|
7 |
python -m venv venv
|
8 |
source venv/bin/activate
|
9 |
pip install -U -r requirements.in
|
requirements.in → scripts/requirements.in
RENAMED
File without changes
|
scripts/train_tokenizer.py
CHANGED
@@ -3,128 +3,179 @@ import string
|
|
3 |
|
4 |
from datasets import load_dataset
|
5 |
from transformers import PreTrainedTokenizerFast
|
6 |
-
from tokenizers import Tokenizer, normalizers, decoders
|
7 |
from tokenizers.models import BPE
|
8 |
from tokenizers.trainers import BpeTrainer
|
9 |
from tokenizers.processors import TemplateProcessing
|
10 |
|
11 |
|
12 |
def batch_iterator():
|
13 |
-
#
|
14 |
-
|
15 |
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
# load_dataset('wikimedia/wikisource', lang, split='train')
|
18 |
# for lang in ['20231201.ar', '20231201.as', '20231201.az', '20231201.ban', '20231201.be', '20231201.bg', '20231201.bn', '20231201.br', '20231201.bs', '20231201.ca', '20231201.cs', '20231201.cy', '20231201.da', '20231201.de', '20231201.el', '20231201.en', '20231201.eo', '20231201.es', '20231201.et', '20231201.eu', '20231201.fa', '20231201.fi', '20231201.fo', '20231201.fr', '20231201.gl', '20231201.gu', '20231201.he', '20231201.hi', '20231201.hr', '20231201.hu', '20231201.hy', '20231201.id', '20231201.is', '20231201.it', '20231201.ja', '20231201.jv', '20231201.kn', '20231201.ko', '20231201.la', '20231201.li', '20231201.lij', '20231201.lt', '20231201.mk', '20231201.ml', '20231201.mr', '20231201.nap', '20231201.nl', '20231201.no', '20231201.or', '20231201.pa', '20231201.pl', '20231201.pms', '20231201.pt', '20231201.ro', '20231201.ru', '20231201.sa', '20231201.sah', '20231201.sk', '20231201.sl', '20231201.sr', '20231201.su', '20231201.sv', '20231201.ta', '20231201.te', '20231201.th', '20231201.tr', '20231201.uk', '20231201.vec', '20231201.vi', '20231201.wa', '20231201.yi', '20231201.zh', '20231201.zh-min-nan']
|
19 |
# )
|
20 |
#
|
21 |
-
# for d in
|
22 |
# for row in d['text']:
|
23 |
# yield row
|
24 |
#
|
25 |
-
# del
|
26 |
# gc.collect()
|
27 |
|
28 |
-
|
|
|
29 |
load_dataset('xu-song/cc100-samples', lang, split='train')
|
30 |
for lang in ['am', 'ar', 'as', 'az', 'be', 'bg', 'bn', 'bn_rom', 'br', 'bs', 'ca', 'cs', 'cy', 'da', 'de', 'el', 'en', 'eo', 'es', 'et', 'eu', 'fa', 'ff', 'fi', 'fr', 'fy', 'ga', 'gd', 'gl', 'gn', 'gu', 'ha', 'he', 'hi', 'hi_rom', 'hr', 'ht', 'hu', 'hy', 'id', 'ig', 'is', 'it', 'ja', 'jv', 'ka', 'kk', 'km', 'kn', 'ko', 'ku', 'ky', 'la', 'lg', 'li', 'ln', 'lo', 'lt', 'lv', 'mg', 'mk', 'ml', 'mn', 'mr', 'ms', 'my', 'my_zaw', 'ne', 'nl', 'no', 'ns', 'om', 'or', 'pa', 'pl', 'ps', 'pt', 'qu', 'rm', 'ro', 'ru', 'sa', 'si', 'sc', 'sd', 'sk', 'sl', 'so', 'sq', 'sr', 'ss', 'su', 'sv', 'sw', 'ta', 'ta_rom', 'te', 'te_rom', 'th', 'tl', 'tn', 'tr', 'ug', 'uk', 'ur', 'ur_rom', 'uz', 'vi', 'wo', 'xh', 'yi', 'yo', 'zh-Hans', 'zh-Hant', 'zu']
|
31 |
)
|
32 |
|
33 |
-
for d in
|
34 |
for row in d['text']:
|
35 |
yield row
|
36 |
|
37 |
-
del
|
38 |
gc.collect()
|
39 |
|
40 |
-
|
|
|
41 |
# load_dataset('csebuetnlp/xlsum', lang, split='train')
|
42 |
# for lang in ['amharic', 'arabic', 'azerbaijani', 'bengali', 'burmese', 'chinese_simplified', 'chinese_traditional', 'english', 'french', 'gujarati', 'hausa', 'hindi', 'igbo', 'indonesian', 'japanese', 'kirundi', 'korean', 'kyrgyz', 'marathi', 'nepali', 'oromo', 'pashto', 'persian', 'pidgin', 'portuguese', 'punjabi', 'russian', 'scottish_gaelic', 'serbian_cyrillic', 'serbian_latin', 'sinhala', 'somali', 'spanish', 'swahili', 'tamil', 'telugu', 'thai', 'tigrinya', 'turkish', 'ukrainian', 'urdu', 'uzbek', 'vietnamese', 'welsh', 'yoruba']
|
43 |
# )
|
44 |
#
|
45 |
-
# for d in
|
46 |
# for row in d['text']:
|
47 |
# yield row
|
48 |
#
|
49 |
-
# del
|
50 |
# gc.collect()
|
51 |
|
52 |
-
|
|
|
53 |
#
|
54 |
-
# for row in
|
55 |
# yield row
|
56 |
#
|
57 |
-
# del
|
58 |
# gc.collect()
|
59 |
|
60 |
-
|
|
|
61 |
|
62 |
-
for row in
|
63 |
yield row['query'] + '\n' + row['answer']
|
64 |
|
65 |
-
del
|
66 |
gc.collect()
|
67 |
|
68 |
-
#
|
|
|
69 |
#
|
70 |
-
# for row in
|
71 |
# yield row['prompt'] + '\n' + row['response']
|
72 |
#
|
73 |
-
# del
|
74 |
# gc.collect()
|
75 |
|
76 |
-
|
|
|
77 |
#
|
78 |
-
# for row in
|
79 |
# yield row['instruction'] + '\n' + row['output']
|
80 |
#
|
81 |
-
# del
|
82 |
# gc.collect()
|
83 |
|
84 |
-
|
|
|
85 |
|
86 |
-
for row in
|
87 |
yield row['question'] + '\n' + row['answer']
|
88 |
|
89 |
-
del
|
90 |
gc.collect()
|
91 |
|
92 |
-
|
|
|
93 |
|
94 |
-
for row in
|
95 |
yield '\n'.join(n['value'] for n in row)
|
96 |
|
97 |
-
del
|
98 |
gc.collect()
|
99 |
|
100 |
-
|
|
|
101 |
#
|
102 |
-
# for row in
|
103 |
# yield '\n'.join(n['value'] for n in row)
|
104 |
#
|
105 |
-
# del
|
106 |
# gc.collect()
|
107 |
|
108 |
-
|
|
|
109 |
# load_dataset('cognitivecomputations/SystemChat-2.0', data_files='SystemChat_filtered.jsonl', split='train'),
|
110 |
# load_dataset('cognitivecomputations/SystemChat-2.0', data_files='SystemChat_multilingual.jsonl', split='train'),
|
111 |
# )
|
112 |
#
|
113 |
-
# for d in
|
114 |
# for row in d['messages']:
|
115 |
# yield '\n'.join(n['content'] for n in row)
|
116 |
#
|
117 |
-
# del
|
118 |
# gc.collect()
|
119 |
|
120 |
-
|
|
|
121 |
#
|
122 |
-
# for row in
|
123 |
# yield f'{row["character"]}\n{row["unicode"]}\n{row["short description"]}\n{row["tags"]}\n{row["LLM description"]}'
|
124 |
#
|
125 |
-
# del
|
126 |
# gc.collect()
|
127 |
|
|
|
128 |
bpe = BPE(unk_token='<unk>', fuse_unk=True, byte_fallback=True)
|
129 |
tokenizer = Tokenizer(bpe)
|
130 |
|
@@ -143,21 +194,26 @@ special_tokens = [
|
|
143 |
'system',
|
144 |
'user',
|
145 |
'assistant',
|
|
|
146 |
]
|
147 |
|
148 |
-
for i in range(2, 25):
|
149 |
-
special_tokens.append(' ' * i)
|
150 |
-
|
151 |
for i in range(64 - len(special_tokens)):
|
152 |
special_tokens.append(f'<|reserved_{i}|>')
|
153 |
|
154 |
-
tokenizer.add_special_tokens(special_tokens)
|
155 |
|
|
|
156 |
ascii_chars = list(string.ascii_letters + string.ascii_lowercase + string.ascii_uppercase + string.digits + string.punctuation)
|
157 |
|
158 |
-
|
159 |
-
|
160 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
161 |
|
162 |
tokenizer.normalizer = normalizers.Sequence([
|
163 |
normalizers.Prepend("▁"),
|
@@ -165,24 +221,24 @@ tokenizer.normalizer = normalizers.Sequence([
|
|
165 |
])
|
166 |
|
167 |
tokenizer.decoder = decoders.Sequence([
|
168 |
-
decoders.Replace("▁", " "),
|
169 |
decoders.ByteFallback(),
|
170 |
decoders.Fuse(),
|
171 |
decoders.Strip(' ', 1, 0),
|
172 |
])
|
173 |
|
174 |
tokenizer.post_processor = TemplateProcessing(
|
175 |
-
single='$A:0',
|
176 |
-
pair='$A:0 $B:1',
|
177 |
special_tokens=[],
|
178 |
)
|
179 |
|
180 |
trainer = BpeTrainer(
|
181 |
vocab_size=32064,
|
182 |
min_frequency=2,
|
183 |
-
max_token_length=
|
184 |
special_tokens=special_tokens,
|
185 |
-
initial_alphabet=ascii_chars + emoji_chars,
|
186 |
)
|
187 |
|
188 |
tokenizer.train_from_iterator(batch_iterator(), trainer)
|
|
|
3 |
|
4 |
from datasets import load_dataset
|
5 |
from transformers import PreTrainedTokenizerFast
|
6 |
+
from tokenizers import Tokenizer, normalizers, decoders, pre_tokenizers
|
7 |
from tokenizers.models import BPE
|
8 |
from tokenizers.trainers import BpeTrainer
|
9 |
from tokenizers.processors import TemplateProcessing
|
10 |
|
11 |
|
12 |
def batch_iterator():
|
13 |
+
# code
|
14 |
+
dataset = load_dataset('bigcode/programming-languages-keywords', split='train')
|
15 |
|
16 |
+
for row in dataset:
|
17 |
+
for n in row['keywords']:
|
18 |
+
yield n
|
19 |
+
|
20 |
+
del dataset
|
21 |
+
gc.collect()
|
22 |
+
|
23 |
+
# code
|
24 |
+
dataset = (
|
25 |
+
load_dataset('bigcode/the-stack-smol-xs', lang, split='train', trust_remote_code=True)
|
26 |
+
for lang in [
|
27 |
+
'ada', 'agda', 'alloy', 'antlr', 'applescript', 'assembly', 'augeas', 'awk', 'batchfile', 'bison', 'bluespec', 'c',
|
28 |
+
'c++', 'c-sharp', 'clojure', 'cmake', 'coffeescript', 'common-lisp', 'css', 'cuda', 'dart', 'dockerfile', 'elixir',
|
29 |
+
'elm', 'emacs-lisp','erlang', 'f-sharp', 'fortran', 'glsl', 'go', 'groovy', 'haskell','html', 'idris', 'isabelle', 'java',
|
30 |
+
'java-server-pages', 'javascript', 'julia', 'kotlin', 'lean', 'literate-agda', 'literate-coffeescript', 'literate-haskell',
|
31 |
+
'lua', 'makefile', 'maple', 'markdown', 'mathematica', 'matlab', 'ocaml', 'pascal', 'perl', 'php', 'powershell', 'prolog',
|
32 |
+
'protocol-buffer', 'python', 'r', 'racket', 'restructuredtext', 'rmarkdown', 'ruby', 'rust', 'sas', 'scala', 'scheme',
|
33 |
+
'shell', 'smalltalk', 'solidity', 'sparql', 'sql', 'stan', 'standard-ml', 'stata', 'systemverilog', 'tcl', 'tcsh', 'tex',
|
34 |
+
'thrift', 'typescript', 'verilog', 'vhdl', 'visual-basic', 'xslt', 'yacc', 'zig'
|
35 |
+
]
|
36 |
+
)
|
37 |
+
|
38 |
+
for d in dataset:
|
39 |
+
for row in d:
|
40 |
+
yield row['content']
|
41 |
+
|
42 |
+
del dataset
|
43 |
+
gc.collect()
|
44 |
+
|
45 |
+
# text
|
46 |
+
dataset = load_dataset('nampdn-ai/tiny-textbooks', split='train')
|
47 |
+
|
48 |
+
for row in dataset:
|
49 |
+
yield row['text']
|
50 |
+
|
51 |
+
del dataset
|
52 |
+
gc.collect()
|
53 |
+
|
54 |
+
## text
|
55 |
+
# dataset = (
|
56 |
# load_dataset('wikimedia/wikisource', lang, split='train')
|
57 |
# for lang in ['20231201.ar', '20231201.as', '20231201.az', '20231201.ban', '20231201.be', '20231201.bg', '20231201.bn', '20231201.br', '20231201.bs', '20231201.ca', '20231201.cs', '20231201.cy', '20231201.da', '20231201.de', '20231201.el', '20231201.en', '20231201.eo', '20231201.es', '20231201.et', '20231201.eu', '20231201.fa', '20231201.fi', '20231201.fo', '20231201.fr', '20231201.gl', '20231201.gu', '20231201.he', '20231201.hi', '20231201.hr', '20231201.hu', '20231201.hy', '20231201.id', '20231201.is', '20231201.it', '20231201.ja', '20231201.jv', '20231201.kn', '20231201.ko', '20231201.la', '20231201.li', '20231201.lij', '20231201.lt', '20231201.mk', '20231201.ml', '20231201.mr', '20231201.nap', '20231201.nl', '20231201.no', '20231201.or', '20231201.pa', '20231201.pl', '20231201.pms', '20231201.pt', '20231201.ro', '20231201.ru', '20231201.sa', '20231201.sah', '20231201.sk', '20231201.sl', '20231201.sr', '20231201.su', '20231201.sv', '20231201.ta', '20231201.te', '20231201.th', '20231201.tr', '20231201.uk', '20231201.vec', '20231201.vi', '20231201.wa', '20231201.yi', '20231201.zh', '20231201.zh-min-nan']
|
58 |
# )
|
59 |
#
|
60 |
+
# for d in dataset:
|
61 |
# for row in d['text']:
|
62 |
# yield row
|
63 |
#
|
64 |
+
# del dataset
|
65 |
# gc.collect()
|
66 |
|
67 |
+
# text
|
68 |
+
dataset = (
|
69 |
load_dataset('xu-song/cc100-samples', lang, split='train')
|
70 |
for lang in ['am', 'ar', 'as', 'az', 'be', 'bg', 'bn', 'bn_rom', 'br', 'bs', 'ca', 'cs', 'cy', 'da', 'de', 'el', 'en', 'eo', 'es', 'et', 'eu', 'fa', 'ff', 'fi', 'fr', 'fy', 'ga', 'gd', 'gl', 'gn', 'gu', 'ha', 'he', 'hi', 'hi_rom', 'hr', 'ht', 'hu', 'hy', 'id', 'ig', 'is', 'it', 'ja', 'jv', 'ka', 'kk', 'km', 'kn', 'ko', 'ku', 'ky', 'la', 'lg', 'li', 'ln', 'lo', 'lt', 'lv', 'mg', 'mk', 'ml', 'mn', 'mr', 'ms', 'my', 'my_zaw', 'ne', 'nl', 'no', 'ns', 'om', 'or', 'pa', 'pl', 'ps', 'pt', 'qu', 'rm', 'ro', 'ru', 'sa', 'si', 'sc', 'sd', 'sk', 'sl', 'so', 'sq', 'sr', 'ss', 'su', 'sv', 'sw', 'ta', 'ta_rom', 'te', 'te_rom', 'th', 'tl', 'tn', 'tr', 'ug', 'uk', 'ur', 'ur_rom', 'uz', 'vi', 'wo', 'xh', 'yi', 'yo', 'zh-Hans', 'zh-Hant', 'zu']
|
71 |
)
|
72 |
|
73 |
+
for d in dataset:
|
74 |
for row in d['text']:
|
75 |
yield row
|
76 |
|
77 |
+
del dataset
|
78 |
gc.collect()
|
79 |
|
80 |
+
## text
|
81 |
+
# dataset = (
|
82 |
# load_dataset('csebuetnlp/xlsum', lang, split='train')
|
83 |
# for lang in ['amharic', 'arabic', 'azerbaijani', 'bengali', 'burmese', 'chinese_simplified', 'chinese_traditional', 'english', 'french', 'gujarati', 'hausa', 'hindi', 'igbo', 'indonesian', 'japanese', 'kirundi', 'korean', 'kyrgyz', 'marathi', 'nepali', 'oromo', 'pashto', 'persian', 'pidgin', 'portuguese', 'punjabi', 'russian', 'scottish_gaelic', 'serbian_cyrillic', 'serbian_latin', 'sinhala', 'somali', 'spanish', 'swahili', 'tamil', 'telugu', 'thai', 'tigrinya', 'turkish', 'ukrainian', 'urdu', 'uzbek', 'vietnamese', 'welsh', 'yoruba']
|
84 |
# )
|
85 |
#
|
86 |
+
# for d in dataset:
|
87 |
# for row in d['text']:
|
88 |
# yield row
|
89 |
#
|
90 |
+
# del dataset
|
91 |
# gc.collect()
|
92 |
|
93 |
+
## text
|
94 |
+
# dataset = load_dataset('recursal/SuperWikiNEXT-32B', split='train')
|
95 |
#
|
96 |
+
# for row in dataset['text']:
|
97 |
# yield row
|
98 |
#
|
99 |
+
# del dataset
|
100 |
# gc.collect()
|
101 |
|
102 |
+
# code
|
103 |
+
dataset = load_dataset('m-a-p/CodeFeedback-Filtered-Instruction', split='train')
|
104 |
|
105 |
+
for row in dataset:
|
106 |
yield row['query'] + '\n' + row['answer']
|
107 |
|
108 |
+
del dataset
|
109 |
gc.collect()
|
110 |
|
111 |
+
# code
|
112 |
+
# dataset = load_dataset('nampdn-ai/tiny-codes', split='train')
|
113 |
#
|
114 |
+
# for row in dataset:
|
115 |
# yield row['prompt'] + '\n' + row['response']
|
116 |
#
|
117 |
+
# del dataset
|
118 |
# gc.collect()
|
119 |
|
120 |
+
## math
|
121 |
+
# dataset = load_dataset('ajibawa-2023/Maths-College', split='train')
|
122 |
#
|
123 |
+
# for row in dataset:
|
124 |
# yield row['instruction'] + '\n' + row['output']
|
125 |
#
|
126 |
+
# del dataset
|
127 |
# gc.collect()
|
128 |
|
129 |
+
# math
|
130 |
+
dataset = load_dataset('microsoft/orca-math-word-problems-200k', split='train')
|
131 |
|
132 |
+
for row in dataset:
|
133 |
yield row['question'] + '\n' + row['answer']
|
134 |
|
135 |
+
del dataset
|
136 |
gc.collect()
|
137 |
|
138 |
+
# text
|
139 |
+
dataset = load_dataset('mlabonne/FineTome-100k', split='train')
|
140 |
|
141 |
+
for row in dataset['conversations']:
|
142 |
yield '\n'.join(n['value'] for n in row)
|
143 |
|
144 |
+
del dataset
|
145 |
gc.collect()
|
146 |
|
147 |
+
## instruction
|
148 |
+
# dataset = load_dataset('arcee-ai/agent-data', split='train')
|
149 |
#
|
150 |
+
# for row in dataset['conversations']:
|
151 |
# yield '\n'.join(n['value'] for n in row)
|
152 |
#
|
153 |
+
# del dataset
|
154 |
# gc.collect()
|
155 |
|
156 |
+
## instruction
|
157 |
+
# dataset = (
|
158 |
# load_dataset('cognitivecomputations/SystemChat-2.0', data_files='SystemChat_filtered.jsonl', split='train'),
|
159 |
# load_dataset('cognitivecomputations/SystemChat-2.0', data_files='SystemChat_multilingual.jsonl', split='train'),
|
160 |
# )
|
161 |
#
|
162 |
+
# for d in dataset:
|
163 |
# for row in d['messages']:
|
164 |
# yield '\n'.join(n['content'] for n in row)
|
165 |
#
|
166 |
+
# del dataset
|
167 |
# gc.collect()
|
168 |
|
169 |
+
## emoji
|
170 |
+
# dataset = load_dataset('badrex/llm-emoji-dataset', split='train')
|
171 |
#
|
172 |
+
# for row in dataset:
|
173 |
# yield f'{row["character"]}\n{row["unicode"]}\n{row["short description"]}\n{row["tags"]}\n{row["LLM description"]}'
|
174 |
#
|
175 |
+
# del dataset
|
176 |
# gc.collect()
|
177 |
|
178 |
+
|
179 |
bpe = BPE(unk_token='<unk>', fuse_unk=True, byte_fallback=True)
|
180 |
tokenizer = Tokenizer(bpe)
|
181 |
|
|
|
194 |
'system',
|
195 |
'user',
|
196 |
'assistant',
|
197 |
+
'tool',
|
198 |
]
|
199 |
|
|
|
|
|
|
|
200 |
for i in range(64 - len(special_tokens)):
|
201 |
special_tokens.append(f'<|reserved_{i}|>')
|
202 |
|
203 |
+
# tokenizer.add_special_tokens(special_tokens)
|
204 |
|
205 |
+
# ascii
|
206 |
ascii_chars = list(string.ascii_letters + string.ascii_lowercase + string.ascii_uppercase + string.digits + string.punctuation)
|
207 |
|
208 |
+
# emoji
|
209 |
+
dataset = load_dataset('badrex/llm-emoji-dataset', split='train')
|
210 |
+
emoji_chars = [row['character'] for row in dataset if len(row['character']) == 1]
|
211 |
+
del dataset
|
212 |
+
|
213 |
+
# programming languages keywords
|
214 |
+
dataset = load_dataset('bigcode/programming-languages-keywords', split='train')
|
215 |
+
code_keywords = [n for row in dataset for n in row['keywords']]
|
216 |
+
del dataset
|
217 |
|
218 |
tokenizer.normalizer = normalizers.Sequence([
|
219 |
normalizers.Prepend("▁"),
|
|
|
221 |
])
|
222 |
|
223 |
tokenizer.decoder = decoders.Sequence([
|
224 |
+
decoders.Replace("▁", " "), # Replace ▁ back to space
|
225 |
decoders.ByteFallback(),
|
226 |
decoders.Fuse(),
|
227 |
decoders.Strip(' ', 1, 0),
|
228 |
])
|
229 |
|
230 |
tokenizer.post_processor = TemplateProcessing(
|
231 |
+
single='$A:0', # $A represents the token, :0 specifies the type ID for single sequences
|
232 |
+
pair='$A:0 $B:1', # For pairs, we specify type IDs for both tokens
|
233 |
special_tokens=[],
|
234 |
)
|
235 |
|
236 |
trainer = BpeTrainer(
|
237 |
vocab_size=32064,
|
238 |
min_frequency=2,
|
239 |
+
max_token_length=8,
|
240 |
special_tokens=special_tokens,
|
241 |
+
initial_alphabet=ascii_chars + emoji_chars + code_keywords,
|
242 |
)
|
243 |
|
244 |
tokenizer.train_from_iterator(batch_iterator(), trainer)
|
special_tokens_map.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "<s>",
|
3 |
+
"eos_token": "<|im_end|>",
|
4 |
+
"pad_token": "</s>",
|
5 |
+
"unk_token": "<unk>"
|
6 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,526 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<unk>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<s>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "<|im_end|>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"4": {
|
36 |
+
"content": "<|im_start|>",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
},
|
43 |
+
"5": {
|
44 |
+
"content": "<tools>",
|
45 |
+
"lstrip": false,
|
46 |
+
"normalized": false,
|
47 |
+
"rstrip": false,
|
48 |
+
"single_word": false,
|
49 |
+
"special": true
|
50 |
+
},
|
51 |
+
"6": {
|
52 |
+
"content": "</tools>",
|
53 |
+
"lstrip": false,
|
54 |
+
"normalized": false,
|
55 |
+
"rstrip": false,
|
56 |
+
"single_word": false,
|
57 |
+
"special": true
|
58 |
+
},
|
59 |
+
"7": {
|
60 |
+
"content": "<tool_call>",
|
61 |
+
"lstrip": false,
|
62 |
+
"normalized": false,
|
63 |
+
"rstrip": false,
|
64 |
+
"single_word": false,
|
65 |
+
"special": true
|
66 |
+
},
|
67 |
+
"8": {
|
68 |
+
"content": "</tool_call>",
|
69 |
+
"lstrip": false,
|
70 |
+
"normalized": false,
|
71 |
+
"rstrip": false,
|
72 |
+
"single_word": false,
|
73 |
+
"special": true
|
74 |
+
},
|
75 |
+
"9": {
|
76 |
+
"content": "<tool_response>",
|
77 |
+
"lstrip": false,
|
78 |
+
"normalized": false,
|
79 |
+
"rstrip": false,
|
80 |
+
"single_word": false,
|
81 |
+
"special": true
|
82 |
+
},
|
83 |
+
"10": {
|
84 |
+
"content": "</tool_response>",
|
85 |
+
"lstrip": false,
|
86 |
+
"normalized": false,
|
87 |
+
"rstrip": false,
|
88 |
+
"single_word": false,
|
89 |
+
"special": true
|
90 |
+
},
|
91 |
+
"11": {
|
92 |
+
"content": "system",
|
93 |
+
"lstrip": false,
|
94 |
+
"normalized": false,
|
95 |
+
"rstrip": false,
|
96 |
+
"single_word": false,
|
97 |
+
"special": true
|
98 |
+
},
|
99 |
+
"12": {
|
100 |
+
"content": "user",
|
101 |
+
"lstrip": false,
|
102 |
+
"normalized": false,
|
103 |
+
"rstrip": false,
|
104 |
+
"single_word": false,
|
105 |
+
"special": true
|
106 |
+
},
|
107 |
+
"13": {
|
108 |
+
"content": "assistant",
|
109 |
+
"lstrip": false,
|
110 |
+
"normalized": false,
|
111 |
+
"rstrip": false,
|
112 |
+
"single_word": false,
|
113 |
+
"special": true
|
114 |
+
},
|
115 |
+
"14": {
|
116 |
+
"content": "tool",
|
117 |
+
"lstrip": false,
|
118 |
+
"normalized": false,
|
119 |
+
"rstrip": false,
|
120 |
+
"single_word": false,
|
121 |
+
"special": true
|
122 |
+
},
|
123 |
+
"15": {
|
124 |
+
"content": "<|reserved_0|>",
|
125 |
+
"lstrip": false,
|
126 |
+
"normalized": false,
|
127 |
+
"rstrip": false,
|
128 |
+
"single_word": false,
|
129 |
+
"special": true
|
130 |
+
},
|
131 |
+
"16": {
|
132 |
+
"content": "<|reserved_1|>",
|
133 |
+
"lstrip": false,
|
134 |
+
"normalized": false,
|
135 |
+
"rstrip": false,
|
136 |
+
"single_word": false,
|
137 |
+
"special": true
|
138 |
+
},
|
139 |
+
"17": {
|
140 |
+
"content": "<|reserved_2|>",
|
141 |
+
"lstrip": false,
|
142 |
+
"normalized": false,
|
143 |
+
"rstrip": false,
|
144 |
+
"single_word": false,
|
145 |
+
"special": true
|
146 |
+
},
|
147 |
+
"18": {
|
148 |
+
"content": "<|reserved_3|>",
|
149 |
+
"lstrip": false,
|
150 |
+
"normalized": false,
|
151 |
+
"rstrip": false,
|
152 |
+
"single_word": false,
|
153 |
+
"special": true
|
154 |
+
},
|
155 |
+
"19": {
|
156 |
+
"content": "<|reserved_4|>",
|
157 |
+
"lstrip": false,
|
158 |
+
"normalized": false,
|
159 |
+
"rstrip": false,
|
160 |
+
"single_word": false,
|
161 |
+
"special": true
|
162 |
+
},
|
163 |
+
"20": {
|
164 |
+
"content": "<|reserved_5|>",
|
165 |
+
"lstrip": false,
|
166 |
+
"normalized": false,
|
167 |
+
"rstrip": false,
|
168 |
+
"single_word": false,
|
169 |
+
"special": true
|
170 |
+
},
|
171 |
+
"21": {
|
172 |
+
"content": "<|reserved_6|>",
|
173 |
+
"lstrip": false,
|
174 |
+
"normalized": false,
|
175 |
+
"rstrip": false,
|
176 |
+
"single_word": false,
|
177 |
+
"special": true
|
178 |
+
},
|
179 |
+
"22": {
|
180 |
+
"content": "<|reserved_7|>",
|
181 |
+
"lstrip": false,
|
182 |
+
"normalized": false,
|
183 |
+
"rstrip": false,
|
184 |
+
"single_word": false,
|
185 |
+
"special": true
|
186 |
+
},
|
187 |
+
"23": {
|
188 |
+
"content": "<|reserved_8|>",
|
189 |
+
"lstrip": false,
|
190 |
+
"normalized": false,
|
191 |
+
"rstrip": false,
|
192 |
+
"single_word": false,
|
193 |
+
"special": true
|
194 |
+
},
|
195 |
+
"24": {
|
196 |
+
"content": "<|reserved_9|>",
|
197 |
+
"lstrip": false,
|
198 |
+
"normalized": false,
|
199 |
+
"rstrip": false,
|
200 |
+
"single_word": false,
|
201 |
+
"special": true
|
202 |
+
},
|
203 |
+
"25": {
|
204 |
+
"content": "<|reserved_10|>",
|
205 |
+
"lstrip": false,
|
206 |
+
"normalized": false,
|
207 |
+
"rstrip": false,
|
208 |
+
"single_word": false,
|
209 |
+
"special": true
|
210 |
+
},
|
211 |
+
"26": {
|
212 |
+
"content": "<|reserved_11|>",
|
213 |
+
"lstrip": false,
|
214 |
+
"normalized": false,
|
215 |
+
"rstrip": false,
|
216 |
+
"single_word": false,
|
217 |
+
"special": true
|
218 |
+
},
|
219 |
+
"27": {
|
220 |
+
"content": "<|reserved_12|>",
|
221 |
+
"lstrip": false,
|
222 |
+
"normalized": false,
|
223 |
+
"rstrip": false,
|
224 |
+
"single_word": false,
|
225 |
+
"special": true
|
226 |
+
},
|
227 |
+
"28": {
|
228 |
+
"content": "<|reserved_13|>",
|
229 |
+
"lstrip": false,
|
230 |
+
"normalized": false,
|
231 |
+
"rstrip": false,
|
232 |
+
"single_word": false,
|
233 |
+
"special": true
|
234 |
+
},
|
235 |
+
"29": {
|
236 |
+
"content": "<|reserved_14|>",
|
237 |
+
"lstrip": false,
|
238 |
+
"normalized": false,
|
239 |
+
"rstrip": false,
|
240 |
+
"single_word": false,
|
241 |
+
"special": true
|
242 |
+
},
|
243 |
+
"30": {
|
244 |
+
"content": "<|reserved_15|>",
|
245 |
+
"lstrip": false,
|
246 |
+
"normalized": false,
|
247 |
+
"rstrip": false,
|
248 |
+
"single_word": false,
|
249 |
+
"special": true
|
250 |
+
},
|
251 |
+
"31": {
|
252 |
+
"content": "<|reserved_16|>",
|
253 |
+
"lstrip": false,
|
254 |
+
"normalized": false,
|
255 |
+
"rstrip": false,
|
256 |
+
"single_word": false,
|
257 |
+
"special": true
|
258 |
+
},
|
259 |
+
"32": {
|
260 |
+
"content": "<|reserved_17|>",
|
261 |
+
"lstrip": false,
|
262 |
+
"normalized": false,
|
263 |
+
"rstrip": false,
|
264 |
+
"single_word": false,
|
265 |
+
"special": true
|
266 |
+
},
|
267 |
+
"33": {
|
268 |
+
"content": "<|reserved_18|>",
|
269 |
+
"lstrip": false,
|
270 |
+
"normalized": false,
|
271 |
+
"rstrip": false,
|
272 |
+
"single_word": false,
|
273 |
+
"special": true
|
274 |
+
},
|
275 |
+
"34": {
|
276 |
+
"content": "<|reserved_19|>",
|
277 |
+
"lstrip": false,
|
278 |
+
"normalized": false,
|
279 |
+
"rstrip": false,
|
280 |
+
"single_word": false,
|
281 |
+
"special": true
|
282 |
+
},
|
283 |
+
"35": {
|
284 |
+
"content": "<|reserved_20|>",
|
285 |
+
"lstrip": false,
|
286 |
+
"normalized": false,
|
287 |
+
"rstrip": false,
|
288 |
+
"single_word": false,
|
289 |
+
"special": true
|
290 |
+
},
|
291 |
+
"36": {
|
292 |
+
"content": "<|reserved_21|>",
|
293 |
+
"lstrip": false,
|
294 |
+
"normalized": false,
|
295 |
+
"rstrip": false,
|
296 |
+
"single_word": false,
|
297 |
+
"special": true
|
298 |
+
},
|
299 |
+
"37": {
|
300 |
+
"content": "<|reserved_22|>",
|
301 |
+
"lstrip": false,
|
302 |
+
"normalized": false,
|
303 |
+
"rstrip": false,
|
304 |
+
"single_word": false,
|
305 |
+
"special": true
|
306 |
+
},
|
307 |
+
"38": {
|
308 |
+
"content": "<|reserved_23|>",
|
309 |
+
"lstrip": false,
|
310 |
+
"normalized": false,
|
311 |
+
"rstrip": false,
|
312 |
+
"single_word": false,
|
313 |
+
"special": true
|
314 |
+
},
|
315 |
+
"39": {
|
316 |
+
"content": "<|reserved_24|>",
|
317 |
+
"lstrip": false,
|
318 |
+
"normalized": false,
|
319 |
+
"rstrip": false,
|
320 |
+
"single_word": false,
|
321 |
+
"special": true
|
322 |
+
},
|
323 |
+
"40": {
|
324 |
+
"content": "<|reserved_25|>",
|
325 |
+
"lstrip": false,
|
326 |
+
"normalized": false,
|
327 |
+
"rstrip": false,
|
328 |
+
"single_word": false,
|
329 |
+
"special": true
|
330 |
+
},
|
331 |
+
"41": {
|
332 |
+
"content": "<|reserved_26|>",
|
333 |
+
"lstrip": false,
|
334 |
+
"normalized": false,
|
335 |
+
"rstrip": false,
|
336 |
+
"single_word": false,
|
337 |
+
"special": true
|
338 |
+
},
|
339 |
+
"42": {
|
340 |
+
"content": "<|reserved_27|>",
|
341 |
+
"lstrip": false,
|
342 |
+
"normalized": false,
|
343 |
+
"rstrip": false,
|
344 |
+
"single_word": false,
|
345 |
+
"special": true
|
346 |
+
},
|
347 |
+
"43": {
|
348 |
+
"content": "<|reserved_28|>",
|
349 |
+
"lstrip": false,
|
350 |
+
"normalized": false,
|
351 |
+
"rstrip": false,
|
352 |
+
"single_word": false,
|
353 |
+
"special": true
|
354 |
+
},
|
355 |
+
"44": {
|
356 |
+
"content": "<|reserved_29|>",
|
357 |
+
"lstrip": false,
|
358 |
+
"normalized": false,
|
359 |
+
"rstrip": false,
|
360 |
+
"single_word": false,
|
361 |
+
"special": true
|
362 |
+
},
|
363 |
+
"45": {
|
364 |
+
"content": "<|reserved_30|>",
|
365 |
+
"lstrip": false,
|
366 |
+
"normalized": false,
|
367 |
+
"rstrip": false,
|
368 |
+
"single_word": false,
|
369 |
+
"special": true
|
370 |
+
},
|
371 |
+
"46": {
|
372 |
+
"content": "<|reserved_31|>",
|
373 |
+
"lstrip": false,
|
374 |
+
"normalized": false,
|
375 |
+
"rstrip": false,
|
376 |
+
"single_word": false,
|
377 |
+
"special": true
|
378 |
+
},
|
379 |
+
"47": {
|
380 |
+
"content": "<|reserved_32|>",
|
381 |
+
"lstrip": false,
|
382 |
+
"normalized": false,
|
383 |
+
"rstrip": false,
|
384 |
+
"single_word": false,
|
385 |
+
"special": true
|
386 |
+
},
|
387 |
+
"48": {
|
388 |
+
"content": "<|reserved_33|>",
|
389 |
+
"lstrip": false,
|
390 |
+
"normalized": false,
|
391 |
+
"rstrip": false,
|
392 |
+
"single_word": false,
|
393 |
+
"special": true
|
394 |
+
},
|
395 |
+
"49": {
|
396 |
+
"content": "<|reserved_34|>",
|
397 |
+
"lstrip": false,
|
398 |
+
"normalized": false,
|
399 |
+
"rstrip": false,
|
400 |
+
"single_word": false,
|
401 |
+
"special": true
|
402 |
+
},
|
403 |
+
"50": {
|
404 |
+
"content": "<|reserved_35|>",
|
405 |
+
"lstrip": false,
|
406 |
+
"normalized": false,
|
407 |
+
"rstrip": false,
|
408 |
+
"single_word": false,
|
409 |
+
"special": true
|
410 |
+
},
|
411 |
+
"51": {
|
412 |
+
"content": "<|reserved_36|>",
|
413 |
+
"lstrip": false,
|
414 |
+
"normalized": false,
|
415 |
+
"rstrip": false,
|
416 |
+
"single_word": false,
|
417 |
+
"special": true
|
418 |
+
},
|
419 |
+
"52": {
|
420 |
+
"content": "<|reserved_37|>",
|
421 |
+
"lstrip": false,
|
422 |
+
"normalized": false,
|
423 |
+
"rstrip": false,
|
424 |
+
"single_word": false,
|
425 |
+
"special": true
|
426 |
+
},
|
427 |
+
"53": {
|
428 |
+
"content": "<|reserved_38|>",
|
429 |
+
"lstrip": false,
|
430 |
+
"normalized": false,
|
431 |
+
"rstrip": false,
|
432 |
+
"single_word": false,
|
433 |
+
"special": true
|
434 |
+
},
|
435 |
+
"54": {
|
436 |
+
"content": "<|reserved_39|>",
|
437 |
+
"lstrip": false,
|
438 |
+
"normalized": false,
|
439 |
+
"rstrip": false,
|
440 |
+
"single_word": false,
|
441 |
+
"special": true
|
442 |
+
},
|
443 |
+
"55": {
|
444 |
+
"content": "<|reserved_40|>",
|
445 |
+
"lstrip": false,
|
446 |
+
"normalized": false,
|
447 |
+
"rstrip": false,
|
448 |
+
"single_word": false,
|
449 |
+
"special": true
|
450 |
+
},
|
451 |
+
"56": {
|
452 |
+
"content": "<|reserved_41|>",
|
453 |
+
"lstrip": false,
|
454 |
+
"normalized": false,
|
455 |
+
"rstrip": false,
|
456 |
+
"single_word": false,
|
457 |
+
"special": true
|
458 |
+
},
|
459 |
+
"57": {
|
460 |
+
"content": "<|reserved_42|>",
|
461 |
+
"lstrip": false,
|
462 |
+
"normalized": false,
|
463 |
+
"rstrip": false,
|
464 |
+
"single_word": false,
|
465 |
+
"special": true
|
466 |
+
},
|
467 |
+
"58": {
|
468 |
+
"content": "<|reserved_43|>",
|
469 |
+
"lstrip": false,
|
470 |
+
"normalized": false,
|
471 |
+
"rstrip": false,
|
472 |
+
"single_word": false,
|
473 |
+
"special": true
|
474 |
+
},
|
475 |
+
"59": {
|
476 |
+
"content": "<|reserved_44|>",
|
477 |
+
"lstrip": false,
|
478 |
+
"normalized": false,
|
479 |
+
"rstrip": false,
|
480 |
+
"single_word": false,
|
481 |
+
"special": true
|
482 |
+
},
|
483 |
+
"60": {
|
484 |
+
"content": "<|reserved_45|>",
|
485 |
+
"lstrip": false,
|
486 |
+
"normalized": false,
|
487 |
+
"rstrip": false,
|
488 |
+
"single_word": false,
|
489 |
+
"special": true
|
490 |
+
},
|
491 |
+
"61": {
|
492 |
+
"content": "<|reserved_46|>",
|
493 |
+
"lstrip": false,
|
494 |
+
"normalized": false,
|
495 |
+
"rstrip": false,
|
496 |
+
"single_word": false,
|
497 |
+
"special": true
|
498 |
+
},
|
499 |
+
"62": {
|
500 |
+
"content": "<|reserved_47|>",
|
501 |
+
"lstrip": false,
|
502 |
+
"normalized": false,
|
503 |
+
"rstrip": false,
|
504 |
+
"single_word": false,
|
505 |
+
"special": true
|
506 |
+
},
|
507 |
+
"63": {
|
508 |
+
"content": "<|reserved_48|>",
|
509 |
+
"lstrip": false,
|
510 |
+
"normalized": false,
|
511 |
+
"rstrip": false,
|
512 |
+
"single_word": false,
|
513 |
+
"special": true
|
514 |
+
}
|
515 |
+
},
|
516 |
+
"bos_token": "<s>",
|
517 |
+
"chat_template": "{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
|
518 |
+
"clean_up_tokenization_spaces": false,
|
519 |
+
"eos_token": "<|im_end|>",
|
520 |
+
"model_max_length": 1000000000000000019884624838656,
|
521 |
+
"pad_token": "</s>",
|
522 |
+
"spaces_between_special_tokens": false,
|
523 |
+
"tokenizer_class": "PreTrainedTokenizerFast",
|
524 |
+
"unk_token": "<unk>",
|
525 |
+
"use_default_system_prompt": false
|
526 |
+
}
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|