tanishq-acu commited on
Commit
eeacf22
1 Parent(s): 3726b79

Upload 8 files

Browse files
README.md ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: en
3
+ tags:
4
+ - exbert
5
+ license: apache-2.0
6
+ datasets:
7
+ - Confidential
8
+ ---
9
+ # BERT base model (uncased)
10
+
11
+ Pretrained model on English language using a masked language modeling (MLM) objective. It was introduced in
12
+ [this paper](https://arxiv.org/abs/1810.04805) and first released in
13
+ [this repository](https://github.com/google-research/bert). This model is uncased: it does not make a difference
14
+ between english and English.
15
+
16
+ ## Model description
17
+
18
+ BERT is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it
19
+ was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of
20
+ publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it
21
+ was pretrained with two objectives:
22
+
23
+ - Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run
24
+ the entire masked sentence through the model and has to predict the masked words. This is different from traditional
25
+ recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like
26
+ GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the
27
+ sentence.
28
+ - Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes
29
+ they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to
30
+ predict if the two sentences were following each other or not.
31
+
32
+ This way, the model learns an inner representation of the English language that can then be used to extract features
33
+ useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard
34
+ classifier using the features produced by the BERT model as inputs.
35
+
36
+ ## Model description [sbcBI/sentiment_analysis]
37
+
38
+ This is a fine-tuned downstream version of the bert-base-uncased model for sentiment analysis, this model is not intended for
39
+ further downstream fine-tuning for any other tasks. This model is trained on a classified dataset for text-classification.
config.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "distilbert-base-uncased",
3
+ "activation": "gelu",
4
+ "architectures": [
5
+ "DistilBertForSequenceClassification"
6
+ ],
7
+ "attention_dropout": 0.1,
8
+ "dim": 768,
9
+ "dropout": 0.1,
10
+ "hidden_dim": 3072,
11
+ "id2label": {
12
+ "0": "LABEL_0",
13
+ "1": "LABEL_1",
14
+ "2": "LABEL_2"
15
+ },
16
+ "initializer_range": 0.02,
17
+ "label2id": {
18
+ "LABEL_0": 0,
19
+ "LABEL_1": 1,
20
+ "LABEL_2": 2
21
+ },
22
+ "max_position_embeddings": 512,
23
+ "model_type": "distilbert",
24
+ "n_heads": 12,
25
+ "n_layers": 6,
26
+ "pad_token_id": 0,
27
+ "problem_type": "single_label_classification",
28
+ "qa_dropout": 0.1,
29
+ "seq_classif_dropout": 0.2,
30
+ "sinusoidal_pos_embds": false,
31
+ "tie_weights_": true,
32
+ "torch_dtype": "float32",
33
+ "transformers_version": "4.18.0",
34
+ "vocab_size": 30522
35
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2bd95828637be19dbfa1a4b038014665cb809fa7fddcf8b53f5e3daf01aa84bf
3
+ size 134
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"do_lower_case": true, "unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "tokenize_chinese_chars": true, "strip_accents": null, "model_max_length": 512, "special_tokens_map_file": null, "name_or_path": "distilbert-base-uncased", "tokenizer_class": "DistilBertTokenizer"}
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6b6d901a867ea6c03426654543f3de1d2d9fdea9ec8c2a3d6c7abb442f3f9ee7
3
+ size 129
vocab.txt ADDED
The diff for this file is too large to render. See raw diff