--- library_name: transformers license: llama3.1 base_model: meta-llama/Meta-Llama-3.1-8B-Instruct tags: - alignment-handbook - trl - dpo - generated_from_trainer - trl - dpo - generated_from_trainer datasets: - tanliboy/orca_dpo_pairs model-index: - name: lambda-llama-3-8b-dpo-test-orca results: [] --- # lambda-llama-3-8b-dpo-test-orca This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct) on the tanliboy/orca_dpo_pairs dataset. It achieves the following results on the evaluation set: - Loss: 0.1235 - Rewards/chosen: -2.8028 - Rewards/rejected: -6.6852 - Rewards/accuracies: 0.9643 - Rewards/margins: 3.8824 - Logps/rejected: -970.0546 - Logps/chosen: -562.0943 - Logits/rejected: -1.9611 - Logits/chosen: -2.4346 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-07 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1