--- library_name: transformers license: llama3.1 base_model: meta-llama/Meta-Llama-3.1-8B-Instruct tags: - alignment-handbook - trl - dpo - generated_from_trainer - trl - dpo - generated_from_trainer datasets: - HuggingFaceH4/ultrafeedback_binarized - tanliboy/orca_dpo_pairs model-index: - name: lambda-llama-3-8b-ipo-test results: [] --- # lambda-llama-3-8b-ipo-test This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct) on the HuggingFaceH4/ultrafeedback_binarized and the tanliboy/orca_dpo_pairs datasets. It achieves the following results on the evaluation set: - Loss: 0.8931 - Rewards/chosen: -0.3610 - Rewards/rejected: -0.5883 - Rewards/accuracies: 0.7922 - Rewards/margins: 0.2272 - Logps/rejected: -3.1373 - Logps/chosen: -2.5334 - Logits/rejected: -2.9939 - Logits/chosen: -2.9244 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 1.1749 | 0.1744 | 100 | 1.0763 | -0.1732 | -0.3120 | 0.7892 | 0.1388 | -2.4465 | -2.0638 | -2.5676 | -2.5133 | | 0.9802 | 0.3489 | 200 | 0.9501 | -0.3184 | -0.5302 | 0.8012 | 0.2118 | -2.9922 | -2.4269 | -2.7873 | -2.7230 | | 0.9548 | 0.5233 | 300 | 0.9136 | -0.3761 | -0.6028 | 0.8163 | 0.2267 | -3.1736 | -2.5710 | -2.8788 | -2.8087 | | 0.9834 | 0.6978 | 400 | 0.9041 | -0.3384 | -0.5537 | 0.8042 | 0.2153 | -3.0509 | -2.4770 | -2.9371 | -2.8667 | | 0.9967 | 0.8722 | 500 | 0.8938 | -0.3750 | -0.6076 | 0.7892 | 0.2326 | -3.1855 | -2.5684 | -3.0293 | -2.9592 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1