--- license: bsd-3-clause base_model: LongSafari/hyenadna-small-32k-seqlen-hf tags: - generated_from_trainer metrics: - precision - recall - accuracy model-index: - name: hyenadna-small-32k-seqlen-hf_ft_BioS73_1kbpHG19_DHSs_H3K27AC results: [] --- # hyenadna-small-32k-seqlen-hf_ft_BioS73_1kbpHG19_DHSs_H3K27AC This model is a fine-tuned version of [LongSafari/hyenadna-small-32k-seqlen-hf](https://huggingface.co/LongSafari/hyenadna-small-32k-seqlen-hf) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4833 - F1 Score: 0.8364 - Precision: 0.8120 - Recall: 0.8624 - Accuracy: 0.8200 - Auc: 0.8967 - Prc: 0.8849 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 Score | Precision | Recall | Accuracy | Auc | Prc | |:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:--------:|:------:|:------:| | 0.481 | 0.1864 | 500 | 0.4460 | 0.8302 | 0.7734 | 0.8959 | 0.8043 | 0.8756 | 0.8562 | | 0.4329 | 0.3727 | 1000 | 0.4339 | 0.8343 | 0.8056 | 0.8652 | 0.8166 | 0.8840 | 0.8728 | | 0.4273 | 0.5591 | 1500 | 0.4282 | 0.8317 | 0.8105 | 0.8541 | 0.8155 | 0.8879 | 0.8797 | | 0.4207 | 0.7454 | 2000 | 0.4154 | 0.8442 | 0.7975 | 0.8966 | 0.8233 | 0.8906 | 0.8784 | | 0.4072 | 0.9318 | 2500 | 0.4407 | 0.8344 | 0.8149 | 0.8547 | 0.8189 | 0.8893 | 0.8806 | | 0.3884 | 1.1182 | 3000 | 0.4272 | 0.8471 | 0.7887 | 0.9148 | 0.8237 | 0.8936 | 0.8821 | | 0.3692 | 1.3045 | 3500 | 0.4085 | 0.8412 | 0.8148 | 0.8694 | 0.8248 | 0.8956 | 0.8854 | | 0.3814 | 1.4909 | 4000 | 0.3987 | 0.8379 | 0.8210 | 0.8554 | 0.8233 | 0.8977 | 0.8878 | | 0.3628 | 1.6772 | 4500 | 0.4825 | 0.8441 | 0.8040 | 0.8883 | 0.8248 | 0.8972 | 0.8885 | | 0.3816 | 1.8636 | 5000 | 0.4157 | 0.8482 | 0.8041 | 0.8973 | 0.8286 | 0.8944 | 0.8817 | | 0.3462 | 2.0499 | 5500 | 0.4931 | 0.8302 | 0.8431 | 0.8177 | 0.8215 | 0.8970 | 0.8868 | | 0.338 | 2.2363 | 6000 | 0.4842 | 0.8464 | 0.7970 | 0.9022 | 0.8252 | 0.8941 | 0.8802 | | 0.3356 | 2.4227 | 6500 | 0.4493 | 0.8434 | 0.8034 | 0.8876 | 0.8241 | 0.8896 | 0.8750 | | 0.3416 | 2.6090 | 7000 | 0.4466 | 0.8478 | 0.7920 | 0.9120 | 0.8252 | 0.8902 | 0.8744 | | 0.3339 | 2.7954 | 7500 | 0.4833 | 0.8364 | 0.8120 | 0.8624 | 0.8200 | 0.8967 | 0.8849 | ### Framework versions - Transformers 4.42.3 - Pytorch 2.3.0+cu121 - Datasets 2.18.0 - Tokenizers 0.19.0