File size: 2,042 Bytes
b0c9663
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6368ad8
 
 
 
 
 
 
b0c9663
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6368ad8
 
b0c9663
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
library_name: transformers
license: cc-by-nc-sa-4.0
base_model: InstaDeepAI/nucleotide-transformer-2.5b-multi-species
tags:
- generated_from_trainer
metrics:
- precision
- recall
- accuracy
model-index:
- name: nucleotide-transformer-2.5b-multi-species_ft_BioS2_1kbpHG19_DHSs_H3K27AC_one_shot
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# nucleotide-transformer-2.5b-multi-species_ft_BioS2_1kbpHG19_DHSs_H3K27AC_one_shot

This model is a fine-tuned version of [InstaDeepAI/nucleotide-transformer-2.5b-multi-species](https://huggingface.co/InstaDeepAI/nucleotide-transformer-2.5b-multi-species) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.9351
- F1 Score: 0.6071
- Precision: 0.6296
- Recall: 0.5862
- Accuracy: 0.6271
- Auc: 0.7851
- Prc: 0.7835

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch   | Step | Validation Loss | F1 Score | Precision | Recall | Accuracy | Auc    | Prc    |
|:-------------:|:-------:|:----:|:---------------:|:--------:|:---------:|:------:|:--------:|:------:|:------:|
| 0.1943        | 8.3333  | 500  | 2.7409          | 0.6071   | 0.6296    | 0.5862 | 0.6271   | 0.7897 | 0.7898 |
| 0.0           | 16.6667 | 1000 | 2.9351          | 0.6071   | 0.6296    | 0.5862 | 0.6271   | 0.7851 | 0.7835 |


### Framework versions

- Transformers 4.46.0.dev0
- Pytorch 2.4.1+cu121
- Datasets 2.18.0
- Tokenizers 0.20.0