File size: 2,042 Bytes
b0c9663 f98c428 b0c9663 f98c428 b0c9663 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
---
library_name: transformers
license: cc-by-nc-sa-4.0
base_model: InstaDeepAI/nucleotide-transformer-2.5b-multi-species
tags:
- generated_from_trainer
metrics:
- precision
- recall
- accuracy
model-index:
- name: nucleotide-transformer-2.5b-multi-species_ft_BioS2_1kbpHG19_DHSs_H3K27AC_one_shot
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# nucleotide-transformer-2.5b-multi-species_ft_BioS2_1kbpHG19_DHSs_H3K27AC_one_shot
This model is a fine-tuned version of [InstaDeepAI/nucleotide-transformer-2.5b-multi-species](https://huggingface.co/InstaDeepAI/nucleotide-transformer-2.5b-multi-species) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.4043
- F1 Score: 0.6984
- Precision: 0.7333
- Recall: 0.6667
- Accuracy: 0.6780
- Auc: 0.8112
- Prc: 0.8221
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 Score | Precision | Recall | Accuracy | Auc | Prc |
|:-------------:|:-------:|:----:|:---------------:|:--------:|:---------:|:------:|:--------:|:------:|:------:|
| 0.171 | 8.3333 | 500 | 2.2531 | 0.6984 | 0.7333 | 0.6667 | 0.6780 | 0.8112 | 0.8211 |
| 0.0 | 16.6667 | 1000 | 2.4043 | 0.6984 | 0.7333 | 0.6667 | 0.6780 | 0.8112 | 0.8221 |
### Framework versions
- Transformers 4.46.0.dev0
- Pytorch 2.4.1+cu121
- Datasets 2.18.0
- Tokenizers 0.20.0
|