--- library_name: transformers license: cc-by-nc-sa-4.0 base_model: InstaDeepAI/nucleotide-transformer-500m-1000g tags: - generated_from_trainer metrics: - precision - recall - accuracy model-index: - name: nucleotide-transformer-500m-1000g_ft_BioS2_1kbpHG19_DHSs_H3K27AC_one_shot results: [] --- # nucleotide-transformer-500m-1000g_ft_BioS2_1kbpHG19_DHSs_H3K27AC_one_shot This model is a fine-tuned version of [InstaDeepAI/nucleotide-transformer-500m-1000g](https://huggingface.co/InstaDeepAI/nucleotide-transformer-500m-1000g) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2825 - F1 Score: 0.8857 - Precision: 0.8857 - Recall: 0.8857 - Accuracy: 0.8644 - Auc: 0.875 - Prc: 0.8717 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 Score | Precision | Recall | Accuracy | Auc | Prc | |:-------------:|:-------:|:----:|:---------------:|:--------:|:---------:|:------:|:--------:|:------:|:------:| | 0.2054 | 8.3333 | 500 | 1.1524 | 0.8857 | 0.8857 | 0.8857 | 0.8644 | 0.8738 | 0.8703 | | 0.0 | 16.6667 | 1000 | 1.2825 | 0.8857 | 0.8857 | 0.8857 | 0.8644 | 0.875 | 0.8717 | ### Framework versions - Transformers 4.46.0.dev0 - Pytorch 2.4.1+cu121 - Datasets 2.18.0 - Tokenizers 0.20.0