--- license: cc-by-nc-sa-4.0 base_model: InstaDeepAI/nucleotide-transformer-v2-100m-multi-species tags: - generated_from_trainer metrics: - precision - recall - accuracy model-index: - name: nucleotide-transformer-v2-100m-multi-species_ft_BioS2_1kbpHG19_DHSs_H3K27AC results: [] --- # nucleotide-transformer-v2-100m-multi-species_ft_BioS2_1kbpHG19_DHSs_H3K27AC This model is a fine-tuned version of [InstaDeepAI/nucleotide-transformer-v2-100m-multi-species](https://huggingface.co/InstaDeepAI/nucleotide-transformer-v2-100m-multi-species) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3735 - F1 Score: 0.8587 - Precision: 0.8425 - Recall: 0.8754 - Accuracy: 0.8487 - Auc: 0.9238 - Prc: 0.9216 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 Score | Precision | Recall | Accuracy | Auc | Prc | |:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:--------:|:------:|:------:| | 0.5667 | 0.0840 | 500 | 0.5015 | 0.7975 | 0.7265 | 0.8838 | 0.7643 | 0.8328 | 0.8048 | | 0.4953 | 0.1681 | 1000 | 0.4806 | 0.8157 | 0.7288 | 0.9260 | 0.7803 | 0.8607 | 0.8304 | | 0.4666 | 0.2521 | 1500 | 0.4297 | 0.8321 | 0.7856 | 0.8844 | 0.8126 | 0.8818 | 0.8659 | | 0.4404 | 0.3362 | 2000 | 0.4224 | 0.8267 | 0.8060 | 0.8485 | 0.8132 | 0.8860 | 0.8693 | | 0.4366 | 0.4202 | 2500 | 0.4054 | 0.8393 | 0.7599 | 0.9372 | 0.8116 | 0.9012 | 0.8936 | | 0.4145 | 0.5043 | 3000 | 0.3880 | 0.8276 | 0.8491 | 0.8072 | 0.8235 | 0.9060 | 0.8967 | | 0.408 | 0.5883 | 3500 | 0.3836 | 0.8360 | 0.8481 | 0.8242 | 0.8302 | 0.9105 | 0.9063 | | 0.3924 | 0.6724 | 4000 | 0.4161 | 0.8444 | 0.7698 | 0.9350 | 0.8191 | 0.9053 | 0.8972 | | 0.3858 | 0.7564 | 4500 | 0.4237 | 0.8432 | 0.7774 | 0.9212 | 0.8201 | 0.9114 | 0.9041 | | 0.3781 | 0.8405 | 5000 | 0.3678 | 0.8446 | 0.8435 | 0.8457 | 0.8366 | 0.9169 | 0.9082 | | 0.3915 | 0.9245 | 5500 | 0.4415 | 0.8158 | 0.8908 | 0.7525 | 0.8217 | 0.9192 | 0.9156 | | 0.3862 | 1.0086 | 6000 | 0.4456 | 0.8584 | 0.8201 | 0.9004 | 0.8440 | 0.9106 | 0.8937 | | 0.3313 | 1.0926 | 6500 | 0.3869 | 0.8593 | 0.8335 | 0.8866 | 0.8475 | 0.9234 | 0.9158 | | 0.3144 | 1.1767 | 7000 | 0.4080 | 0.8581 | 0.8527 | 0.8636 | 0.8501 | 0.9266 | 0.9210 | | 0.3239 | 1.2607 | 7500 | 0.3974 | 0.8515 | 0.8587 | 0.8444 | 0.8454 | 0.9239 | 0.9188 | | 0.3446 | 1.3448 | 8000 | 0.3735 | 0.8587 | 0.8425 | 0.8754 | 0.8487 | 0.9238 | 0.9216 | ### Framework versions - Transformers 4.42.3 - Pytorch 2.3.0+cu121 - Datasets 2.18.0 - Tokenizers 0.19.0