--- license: cc-by-nc-sa-4.0 base_model: InstaDeepAI/nucleotide-transformer-v2-500m-multi-species tags: - generated_from_trainer metrics: - precision - recall - accuracy model-index: - name: nucleotide-transformer-v2-500m-multi-species_ft_BioS73_1kbpHG19_DHSs_H3K27AC results: [] --- # nucleotide-transformer-v2-500m-multi-species_ft_BioS73_1kbpHG19_DHSs_H3K27AC This model is a fine-tuned version of [InstaDeepAI/nucleotide-transformer-v2-500m-multi-species](https://huggingface.co/InstaDeepAI/nucleotide-transformer-v2-500m-multi-species) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7558 - F1 Score: 0.8878 - Precision: 0.8944 - Recall: 0.8813 - Accuracy: 0.8811 - Auc: 0.9434 - Prc: 0.9416 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 Score | Precision | Recall | Accuracy | Auc | Prc | |:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:--------:|:------:|:------:| | 0.4249 | 0.3726 | 500 | 0.3524 | 0.8663 | 0.8348 | 0.9001 | 0.8517 | 0.9271 | 0.9269 | | 0.3396 | 0.7452 | 1000 | 0.3162 | 0.8815 | 0.8701 | 0.8932 | 0.8718 | 0.9411 | 0.9405 | | 0.2838 | 1.1177 | 1500 | 0.2938 | 0.8907 | 0.8666 | 0.9162 | 0.8800 | 0.9516 | 0.9533 | | 0.244 | 1.4903 | 2000 | 0.2702 | 0.9001 | 0.8852 | 0.9155 | 0.8915 | 0.9528 | 0.9523 | | 0.2207 | 1.8629 | 2500 | 0.3141 | 0.8993 | 0.8656 | 0.9358 | 0.8882 | 0.9526 | 0.9517 | | 0.2753 | 2.2355 | 3000 | 1.4071 | 0.9004 | 0.8611 | 0.9434 | 0.8886 | 0.9400 | 0.9247 | | 0.4227 | 2.6080 | 3500 | 1.5821 | 0.8953 | 0.9069 | 0.8841 | 0.8897 | 0.9529 | 0.9540 | | 0.4015 | 2.9806 | 4000 | 1.6699 | 0.8918 | 0.8884 | 0.8953 | 0.8841 | 0.9511 | 0.9516 | | 0.2124 | 3.3532 | 4500 | 1.7558 | 0.8878 | 0.8944 | 0.8813 | 0.8811 | 0.9434 | 0.9416 | ### Framework versions - Transformers 4.42.3 - Pytorch 2.3.0+cu121 - Datasets 2.18.0 - Tokenizers 0.19.0