File size: 2,935 Bytes
86a0e0d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f969500
 
 
 
 
 
86a0e0d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f969500
86a0e0d
 
 
 
 
 
f969500
 
 
 
 
 
 
 
 
 
 
 
 
86a0e0d
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
---
license: apache-2.0
base_model: google/flan-t5-base
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: expected_model_nov11
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# expected_model_nov11

This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1943
- Rouge1: 72.751
- Rouge2: 64.531
- Rougel: 71.7809
- Rougelsum: 72.5858
- Gen Len: 16.4797

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1  | Rouge2  | Rougel  | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| 11.5118       | 0.68  | 200  | 0.4990          | 52.9797 | 43.7182 | 52.2591 | 52.9986   | 9.6068  |
| 0.4597        | 1.36  | 400  | 0.2770          | 71.5492 | 62.6473 | 70.6589 | 71.4471   | 16.4237 |
| 0.3259        | 2.03  | 600  | 0.2486          | 72.1475 | 63.0992 | 71.3032 | 72.0859   | 16.3983 |
| 0.273         | 2.71  | 800  | 0.2273          | 71.9258 | 63.3664 | 71.1095 | 71.7798   | 16.5339 |
| 0.2545        | 3.39  | 1000 | 0.2161          | 72.3257 | 63.5931 | 71.5259 | 72.3231   | 16.4322 |
| 0.2374        | 4.07  | 1200 | 0.2091          | 72.3551 | 63.9109 | 71.5349 | 72.2473   | 16.4746 |
| 0.2143        | 4.75  | 1400 | 0.2116          | 72.3027 | 63.8027 | 71.6227 | 72.221    | 16.439  |
| 0.2161        | 5.42  | 1600 | 0.1991          | 72.3081 | 63.7819 | 71.4337 | 72.2038   | 16.4712 |
| 0.1987        | 6.1   | 1800 | 0.2039          | 72.4605 | 64.0889 | 71.6023 | 72.3601   | 16.4864 |
| 0.1942        | 6.78  | 2000 | 0.2020          | 72.458  | 63.8879 | 71.4977 | 72.3096   | 16.4424 |
| 0.1826        | 7.46  | 2200 | 0.2000          | 72.2467 | 63.7052 | 71.3826 | 72.0909   | 16.4288 |
| 0.1867        | 8.14  | 2400 | 0.1965          | 72.417  | 64.0356 | 71.5254 | 72.3042   | 16.4983 |
| 0.1773        | 8.81  | 2600 | 0.1930          | 72.5715 | 64.1819 | 71.6728 | 72.501    | 16.4797 |
| 0.1875        | 9.49  | 2800 | 0.1943          | 72.751  | 64.531  | 71.7809 | 72.5858   | 16.4797 |


### Framework versions

- Transformers 4.33.2
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3