Initial commit
Browse files- README.md +1 -1
- a2c-PandaReachDense-v2.zip +2 -2
- a2c-PandaReachDense-v2/data +11 -11
- a2c-PandaReachDense-v2/policy.optimizer.pth +1 -1
- a2c-PandaReachDense-v2/policy.pth +1 -1
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
- vec_normalize.pkl +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -9.26 +/- 2.55
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-PandaReachDense-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2b0ae673ee877b45363d56289080863e2ee2dc4de318e928fb2bf641ef1f0aeb
|
3 |
+
size 103751
|
a2c-PandaReachDense-v2/data
CHANGED
@@ -41,12 +41,12 @@
|
|
41 |
"_np_random": null
|
42 |
},
|
43 |
"n_envs": 4,
|
44 |
-
"num_timesteps":
|
45 |
-
"_total_timesteps":
|
46 |
"_num_timesteps_at_start": 0,
|
47 |
"seed": null,
|
48 |
"action_noise": null,
|
49 |
-
"start_time":
|
50 |
"learning_rate": 0.0007,
|
51 |
"tensorboard_log": null,
|
52 |
"lr_schedule": {
|
@@ -55,10 +55,10 @@
|
|
55 |
},
|
56 |
"_last_obs": {
|
57 |
":type:": "<class 'collections.OrderedDict'>",
|
58 |
-
":serialized:": "
|
59 |
-
"achieved_goal": "[[ 0.
|
60 |
-
"desired_goal": "[[
|
61 |
-
"observation": "[[ 0.
|
62 |
},
|
63 |
"_last_episode_starts": {
|
64 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -66,9 +66,9 @@
|
|
66 |
},
|
67 |
"_last_original_obs": {
|
68 |
":type:": "<class 'collections.OrderedDict'>",
|
69 |
-
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
70 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
-
"desired_goal": "[[
|
72 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
},
|
74 |
"_episode_num": 0,
|
@@ -77,13 +77,13 @@
|
|
77 |
"_current_progress_remaining": 0.0,
|
78 |
"ep_info_buffer": {
|
79 |
":type:": "<class 'collections.deque'>",
|
80 |
-
":serialized:": "
|
81 |
},
|
82 |
"ep_success_buffer": {
|
83 |
":type:": "<class 'collections.deque'>",
|
84 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
},
|
86 |
-
"_n_updates":
|
87 |
"n_steps": 5,
|
88 |
"gamma": 0.99,
|
89 |
"gae_lambda": 1.0,
|
|
|
41 |
"_np_random": null
|
42 |
},
|
43 |
"n_envs": 4,
|
44 |
+
"num_timesteps": 1000,
|
45 |
+
"_total_timesteps": 1000,
|
46 |
"_num_timesteps_at_start": 0,
|
47 |
"seed": null,
|
48 |
"action_noise": null,
|
49 |
+
"start_time": 1679144344499028732,
|
50 |
"learning_rate": 0.0007,
|
51 |
"tensorboard_log": null,
|
52 |
"lr_schedule": {
|
|
|
55 |
},
|
56 |
"_last_obs": {
|
57 |
":type:": "<class 'collections.OrderedDict'>",
|
58 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA+VszP9R3Wb7WBJU/+VszP9R3Wb7WBJU/+VszP9R3Wb7WBJU/+VszP9R3Wb7WBJU/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAaqvUvhC9dD8UFxG/fL4Vv5TBOj8Nw8C/9p3YPIw1Xj07aF0+u/YUP4ANRz9iY+i/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAD5WzM/1HdZvtYElT8Q/8o9TY0mvMrEuj35WzM/1HdZvtYElT8Q/8o9TY0mvMrEuj35WzM/1HdZvtYElT8Q/8o9TY0mvMrEuj35WzM/1HdZvtYElT8Q/8o9TY0mvMrEuj2UaA5LBEsGhpRoEnSUUpR1Lg==",
|
59 |
+
"achieved_goal": "[[ 0.70062214 -0.21237117 1.1642101 ]\n [ 0.70062214 -0.21237117 1.1642101 ]\n [ 0.70062214 -0.21237117 1.1642101 ]\n [ 0.70062214 -0.21237117 1.1642101 ]]",
|
60 |
+
"desired_goal": "[[-0.4153703 0.95600986 -0.5667584 ]\n [-0.5849378 0.72951627 -1.5059525 ]\n [ 0.02644251 0.05425029 0.21621792]\n [ 0.5818898 0.77754974 -1.8155329 ]]",
|
61 |
+
"observation": "[[ 0.70062214 -0.21237117 1.1642101 0.09911931 -0.01016552 0.09119566]\n [ 0.70062214 -0.21237117 1.1642101 0.09911931 -0.01016552 0.09119566]\n [ 0.70062214 -0.21237117 1.1642101 0.09911931 -0.01016552 0.09119566]\n [ 0.70062214 -0.21237117 1.1642101 0.09911931 -0.01016552 0.09119566]]"
|
62 |
},
|
63 |
"_last_episode_starts": {
|
64 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
66 |
},
|
67 |
"_last_original_obs": {
|
68 |
":type:": "<class 'collections.OrderedDict'>",
|
69 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAjBnMPfQimb08ukg+6FSlvQP0Bj6ONpI+4CpqPAowILtsjTc+Xph0vEz4BD7v1GA9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
70 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
+
"desired_goal": "[[ 0.0996581 -0.0747737 0.19602293]\n [-0.08072835 0.1317902 0.28557247]\n [ 0.01429245 -0.00244427 0.17925042]\n [-0.01492891 0.12985343 0.05489057]]",
|
72 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
},
|
74 |
"_episode_num": 0,
|
|
|
77 |
"_current_progress_remaining": 0.0,
|
78 |
"ep_info_buffer": {
|
79 |
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gAWVnQMAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIFD/G3LVkKsCUhpRSlIwBbJRLMowBdJRHP+rpEhJRO1x1fZQoaAZoCWgPQwh1V3bB4IouwJSGlFKUaBVLMmgWRz/nOoo/iYLLdX2UKGgGaAloD0MINQu0O6QIH8CUhpRSlGgVSzJoFkc/42g13t8eCHV9lChoBmgJaA9DCAzIXu/+iCDAlIaUUpRoFUsyaBZHP99gOSW7e2x1fZQoaAZoCWgPQwj/6nHfagUkwJSGlFKUaBVLMmgWRz/1RhQWN3nqdX2UKGgGaAloD0MIkxlvK70OKsCUhpRSlGgVSzJoFkc/825mRNh3JXV9lChoBmgJaA9DCEYkCi3r5izAlIaUUpRoFUsyaBZHP/GGyX2M85l1fZQoaAZoCWgPQwjb+uk/a7YpwJSGlFKUaBVLMmgWRz/vVeKKpDNRdX2UKGgGaAloD0MIC9XNxd92JsCUhpRSlGgVSzJoFkdAADHjp9qk/XV9lChoBmgJaA9DCC3uPzIduijAlIaUUpRoFUsyaBZHP/6ctXgccVB1fZQoaAZoCWgPQwhQcLGiBjMkwJSGlFKUaBVLMmgWRz/8uPJaJQ+EdX2UKGgGaAloD0MIs7YpHheFIcCUhpRSlGgVSzJoFkc/+uLuQZGayHV9lChoBmgJaA9DCOdvQiECriLAlIaUUpRoFUsyaBZHQAakMLF4s3B1fZQoaAZoCWgPQwg3jILg8Z0bwJSGlFKUaBVLMmgWR0AFupuMuOCHdX2UKGgGaAloD0MIKbAApgwsLcCUhpRSlGgVSzJoFkdABM3BHkLhJnV9lChoBmgJaA9DCGl0B7EzxSjAlIaUUpRoFUsyaBZHQAPiqhlDneV1fZQoaAZoCWgPQwgNcEG2LFckwJSGlFKUaBVLMmgWR0ANHpyIYWLxdX2UKGgGaAloD0MI2SWqtwauNMCUhpRSlGgVSzJoFkdADDVkMCtA9nV9lChoBmgJaA9DCFQ2rKks+hTAlIaUUpRoFUsyaBZHQAtDJU5uIh11fZQoaAZoCWgPQwj+YOC59+wwwJSGlFKUaBVLMmgWR0AKV5WzWwu/dWUu"
|
81 |
},
|
82 |
"ep_success_buffer": {
|
83 |
":type:": "<class 'collections.deque'>",
|
84 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
},
|
86 |
+
"_n_updates": 50,
|
87 |
"n_steps": 5,
|
88 |
"gamma": 0.99,
|
89 |
"gae_lambda": 1.0,
|
a2c-PandaReachDense-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 44734
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d4e38edc7c322db93b78e3113e8982064883cceab3836b7697fcbd204ad7fd67
|
3 |
size 44734
|
a2c-PandaReachDense-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 46014
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e2ec15985d6873e31ff015a24a8771f26e4d3b4ddd684f257946f827f9bc51bb
|
3 |
size 46014
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f84a49bec10>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f84a49c1140>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679141155009013365, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAzv38PgTqBL2+lA4/zv38PgTqBL2+lA4/zv38PgTqBL2+lA4/zv38PgTqBL2+lA4/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAU3SsPya0Ib9Slli8R9FuP1LSsT9rGC6/rmV9P7qowT8zCdU/k1iQP2END78MdYW/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADO/fw+BOoEvb6UDj8bhAw8FilKO1E/wDvO/fw+BOoEvb6UDj8bhAw8FilKO1E/wDvO/fw+BOoEvb6UDj8bhAw8FilKO1E/wDvO/fw+BOoEvb6UDj8bhAw8FilKO1E/wDuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.49412388 -0.03244974 0.5569571 ]\n [ 0.49412388 -0.03244974 0.5569571 ]\n [ 0.49412388 -0.03244974 0.5569571 ]\n [ 0.49412388 -0.03244974 0.5569571 ]]", "desired_goal": "[[ 1.3472999 -0.6316551 -0.01321943]\n [ 0.9328808 1.389231 -0.6800601 ]\n [ 0.98983276 1.5129616 1.6643432 ]\n [ 1.1277031 -0.5587979 -1.0426345 ]]", "observation": "[[ 0.49412388 -0.03244974 0.5569571 0.00857642 0.00308472 0.00586692]\n [ 0.49412388 -0.03244974 0.5569571 0.00857642 0.00308472 0.00586692]\n [ 0.49412388 -0.03244974 0.5569571 0.00857642 0.00308472 0.00586692]\n [ 0.49412388 -0.03244974 0.5569571 0.00857642 0.00308472 0.00586692]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAlsMAPjApCzzmh/k9OLGGvA5oBL4mDpk5BPJCPIKazr2Ej3o9sj6ovcBYAr0nJpk+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 1.2574610e-01 8.4937066e-03 1.2184124e-01]\n [-1.6441926e-02 -1.2930319e-01 2.9192975e-04]\n [ 1.1898521e-02 -1.0088064e-01 6.1172023e-02]\n [-8.2150832e-02 -3.1822920e-02 2.9911920e-01]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIkszqHW5HEMCUhpRSlIwBbJRLMowBdJRHQKXE3hfBvaV1fZQoaAZoCWgPQwgdk8X9R0YUwJSGlFKUaBVLMmgWR0ClxKKmCROldX2UKGgGaAloD0MIC+2cZoHGEcCUhpRSlGgVSzJoFkdApcRnZyuIRHV9lChoBmgJaA9DCKLUXkTbQRPAlIaUUpRoFUsyaBZHQKXELKMefZp1fZQoaAZoCWgPQwgVOxqH+s0XwJSGlFKUaBVLMmgWR0ClxeyFPBSDdX2UKGgGaAloD0MI0IB6M2rOH8CUhpRSlGgVSzJoFkdApcWxib2DhHV9lChoBmgJaA9DCMHHYMWp3iHAlIaUUpRoFUsyaBZHQKXFds3Q2Mt1fZQoaAZoCWgPQwhxrfawF9oQwJSGlFKUaBVLMmgWR0ClxT0kv9LpdX2UKGgGaAloD0MItXBZhc1QJMCUhpRSlGgVSzJoFkdApceXio86m3V9lChoBmgJaA9DCNRFCmXhqx/AlIaUUpRoFUsyaBZHQKXHXQKrq+t1fZQoaAZoCWgPQwg8hzJUxdQEwJSGlFKUaBVLMmgWR0ClxyH2IwdsdX2UKGgGaAloD0MIx/MZUG9eIMCUhpRSlGgVSzJoFkdApcboDNhVl3V9lChoBmgJaA9DCE4oRMAhxBTAlIaUUpRoFUsyaBZHQKXJTi0fHPx1fZQoaAZoCWgPQwjU1/M1y0UXwJSGlFKUaBVLMmgWR0ClyROafBepdX2UKGgGaAloD0MItdyZCYYDFMCUhpRSlGgVSzJoFkdApcjZKYiPhnV9lChoBmgJaA9DCLjM6bKY+AbAlIaUUpRoFUsyaBZHQKXInysjmjl1fZQoaAZoCWgPQwhnKsQj8dIVwJSGlFKUaBVLMmgWR0ClyxVTzd1udX2UKGgGaAloD0MIYobGE0FsG8CUhpRSlGgVSzJoFkdApcra0QbuMXV9lChoBmgJaA9DCFt9dVWgFhnAlIaUUpRoFUsyaBZHQKXKoFZgXuV1fZQoaAZoCWgPQwg9ghspW+QVwJSGlFKUaBVLMmgWR0ClymYlY2bYdX2UKGgGaAloD0MI0xOWeEAZ/L+UhpRSlGgVSzJoFkdApcy+2JBPbnV9lChoBmgJaA9DCIdsIF1sqhzAlIaUUpRoFUsyaBZHQKXMhHhjvux1fZQoaAZoCWgPQwjOqPkq+SgRwJSGlFKUaBVLMmgWR0ClzEmOlwcYdX2UKGgGaAloD0MI9OFZgoxQGMCUhpRSlGgVSzJoFkdApcwPoC+10HV9lChoBmgJaA9DCCl5dY4B+RXAlIaUUpRoFUsyaBZHQKXObmqYJE91fZQoaAZoCWgPQwhENpAuNq0KwJSGlFKUaBVLMmgWR0ClzjT4cm0FdX2UKGgGaAloD0MI0T5W8NuQC8CUhpRSlGgVSzJoFkdApc36Hh0heXV9lChoBmgJaA9DCMY0071OigrAlIaUUpRoFUsyaBZHQKXNv9GZuyh1fZQoaAZoCWgPQwiufmySH7EWwJSGlFKUaBVLMmgWR0Cl0CCyQgcMdX2UKGgGaAloD0MIlSh7Szk/DcCUhpRSlGgVSzJoFkdApc/lEy+HrXV9lChoBmgJaA9DCAHD8ufbAhHAlIaUUpRoFUsyaBZHQKXPqZhrnDB1fZQoaAZoCWgPQwgIkKFjBzUFwJSGlFKUaBVLMmgWR0Clz270voNedX2UKGgGaAloD0MIdM+6RssBGcCUhpRSlGgVSzJoFkdApdEkn5SFXnV9lChoBmgJaA9DCPm6DP/ppgjAlIaUUpRoFUsyaBZHQKXQ6Rcu8K51fZQoaAZoCWgPQwhaZaa0/hYJwJSGlFKUaBVLMmgWR0Cl0K2dEsredX2UKGgGaAloD0MIP5C8cyijD8CUhpRSlGgVSzJoFkdApdBzB2wFDHV9lChoBmgJaA9DCGA97lutEwLAlIaUUpRoFUsyaBZHQKXSGUZeiSJ1fZQoaAZoCWgPQwhJTbuYZtoGwJSGlFKUaBVLMmgWR0Cl0d2X9itrdX2UKGgGaAloD0MIzQGCOXo8DMCUhpRSlGgVSzJoFkdApdGiamXPaHV9lChoBmgJaA9DCPfq46Hv7hDAlIaUUpRoFUsyaBZHQKXRZ4gzP8h1fZQoaAZoCWgPQwhOm3EaoioLwJSGlFKUaBVLMmgWR0Cl0xAUL2HtdX2UKGgGaAloD0MIl445z9hXCsCUhpRSlGgVSzJoFkdApdLUZzgdfnV9lChoBmgJaA9DCJ8fRgiPZhLAlIaUUpRoFUsyaBZHQKXSmSPluFZ1fZQoaAZoCWgPQwi9woL7Ae8AwJSGlFKUaBVLMmgWR0Cl0l5ha1TjdX2UKGgGaAloD0MIYf4KmSujBMCUhpRSlGgVSzJoFkdApdP8Aq/dqXV9lChoBmgJaA9DCPoK0oxFEwTAlIaUUpRoFUsyaBZHQKXTwFajesR1fZQoaAZoCWgPQwgKStHKvUAEwJSGlFKUaBVLMmgWR0Cl04T9jwx4dX2UKGgGaAloD0MIlYJuL2msBMCUhpRSlGgVSzJoFkdApdNKJGe+VXV9lChoBmgJaA9DCFhyFYvfVAvAlIaUUpRoFUsyaBZHQKXU+d92HL11fZQoaAZoCWgPQwht/8pKk5IQwJSGlFKUaBVLMmgWR0Cl1L4qG1x9dX2UKGgGaAloD0MIMILGTKJ+AsCUhpRSlGgVSzJoFkdApdSCpkwvg3V9lChoBmgJaA9DCPVKWYY4hhLAlIaUUpRoFUsyaBZHQKXUR7pFCsx1fZQoaAZoCWgPQwhFgxQ8hZwPwJSGlFKUaBVLMmgWR0Cl1e3AmAskdX2UKGgGaAloD0MI+GuyRj2E/7+UhpRSlGgVSzJoFkdApdWyExqO93V9lChoBmgJaA9DCPOQKR+CyhPAlIaUUpRoFUsyaBZHQKXVdtgKF7F1fZQoaAZoCWgPQwg/bypSYUwFwJSGlFKUaBVLMmgWR0Cl1Tv/zasZdX2UKGgGaAloD0MINuSfGcRHDcCUhpRSlGgVSzJoFkdApdb0QEpy63V9lChoBmgJaA9DCKrVV1cFGhLAlIaUUpRoFUsyaBZHQKXWuNmUW2x1fZQoaAZoCWgPQwjoE3mSdB0RwJSGlFKUaBVLMmgWR0Cl1n2Cdz4ldX2UKGgGaAloD0MIxf6ye/KQFsCUhpRSlGgVSzJoFkdApdZC0dBBzHV9lChoBmgJaA9DCKJgxhSswRLAlIaUUpRoFUsyaBZHQKXX6wPiDNB1fZQoaAZoCWgPQwj7lGOyuF8BwJSGlFKUaBVLMmgWR0Cl169alk6LdX2UKGgGaAloD0MITbotkQtOGcCUhpRSlGgVSzJoFkdApdd0N4JNTXV9lChoBmgJaA9DCPuVzodneRHAlIaUUpRoFUsyaBZHQKXXOWhRIjJ1fZQoaAZoCWgPQwg1ecpquk4QwJSGlFKUaBVLMmgWR0Cl2OLX18LKdX2UKGgGaAloD0MILqwb744MDMCUhpRSlGgVSzJoFkdApdioG0NSZXV9lChoBmgJaA9DCC457pQO5hfAlIaUUpRoFUsyaBZHQKXYbPZ7HAB1fZQoaAZoCWgPQwjQ0hVsIx4IwJSGlFKUaBVLMmgWR0Cl2DLSeAd5dX2UKGgGaAloD0MIv5tu2SGeBcCUhpRSlGgVSzJoFkdApdnStPpIMHV9lChoBmgJaA9DCGrecYqOpArAlIaUUpRoFUsyaBZHQKXZl0gbIcR1fZQoaAZoCWgPQwgFpz6QvOMUwJSGlFKUaBVLMmgWR0Cl2VwVCXyBdX2UKGgGaAloD0MI6rRug9qvEcCUhpRSlGgVSzJoFkdApdkhOi35OHV9lChoBmgJaA9DCDD0iNFzWxXAlIaUUpRoFUsyaBZHQKXa1IRywOh1fZQoaAZoCWgPQwgxCKwcWnQRwJSGlFKUaBVLMmgWR0Cl2plDOTq0dX2UKGgGaAloD0MICf8iaMwEEMCUhpRSlGgVSzJoFkdApdpdwFTvRnV9lChoBmgJaA9DCKispuuJrgXAlIaUUpRoFUsyaBZHQKXaIvfTCtR1fZQoaAZoCWgPQwh7+DJRhFQMwJSGlFKUaBVLMmgWR0Cl28fp+tr9dX2UKGgGaAloD0MI+dueILHNFMCUhpRSlGgVSzJoFkdApduMlolD4XV9lChoBmgJaA9DCMQ/bOnRlPu/lIaUUpRoFUsyaBZHQKXbURB/qgR1fZQoaAZoCWgPQwioUUgyqxcGwJSGlFKUaBVLMmgWR0Cl2xYigTRIdX2UKGgGaAloD0MIjGoRUUyeBMCUhpRSlGgVSzJoFkdApdzCj1wo9nV9lChoBmgJaA9DCCdPWU3XUw7AlIaUUpRoFUsyaBZHQKXchyU9pyp1fZQoaAZoCWgPQwjLEwg7xUoNwJSGlFKUaBVLMmgWR0Cl3EuanaWYdX2UKGgGaAloD0MI8Ief/x7cEMCUhpRSlGgVSzJoFkdApdwQr4Fia3V9lChoBmgJaA9DCP5HpkOnBwLAlIaUUpRoFUsyaBZHQKXdwNNrTH91fZQoaAZoCWgPQwi8Azxp4RIPwJSGlFKUaBVLMmgWR0Cl3YWEbo8qdX2UKGgGaAloD0MI06BoHsCyEcCUhpRSlGgVSzJoFkdApd1KS3b213V9lChoBmgJaA9DCJ9x4UBIdgTAlIaUUpRoFUsyaBZHQKXdD5Y5ksl1fZQoaAZoCWgPQwhkAn6NJDEUwJSGlFKUaBVLMmgWR0Cl3sPCl7+ldX2UKGgGaAloD0MI8uocA7LXEMCUhpRSlGgVSzJoFkdApd6ISQHRkXV9lChoBmgJaA9DCHhha7by8gLAlIaUUpRoFUsyaBZHQKXeTOrQw9J1fZQoaAZoCWgPQwg41zBD4ykJwJSGlFKUaBVLMmgWR0Cl3hHuJDVpdX2UKGgGaAloD0MIYTjXMEODAcCUhpRSlGgVSzJoFkdApd+6gyuZC3V9lChoBmgJaA9DCNh9x/DYDwfAlIaUUpRoFUsyaBZHQKXfftZV4ot1fZQoaAZoCWgPQwjoTrD/OrcKwJSGlFKUaBVLMmgWR0Cl30NRNyo5dX2UKGgGaAloD0MIak/JObFnEsCUhpRSlGgVSzJoFkdApd8Inv2GqXV9lChoBmgJaA9DCDRIwVPI9RHAlIaUUpRoFUsyaBZHQKXgwQr+YMR1fZQoaAZoCWgPQwih2uBE9NsRwJSGlFKUaBVLMmgWR0Cl4IW2gFotdX2UKGgGaAloD0MI/fhLi/qkD8CUhpRSlGgVSzJoFkdApeBKHwgDBHV9lChoBmgJaA9DCCy4H/DAQALAlIaUUpRoFUsyaBZHQKXgD0OmR/51ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f84a49bec10>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f84a49c1140>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000, "_total_timesteps": 1000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679144344499028732, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA+VszP9R3Wb7WBJU/+VszP9R3Wb7WBJU/+VszP9R3Wb7WBJU/+VszP9R3Wb7WBJU/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAaqvUvhC9dD8UFxG/fL4Vv5TBOj8Nw8C/9p3YPIw1Xj07aF0+u/YUP4ANRz9iY+i/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAD5WzM/1HdZvtYElT8Q/8o9TY0mvMrEuj35WzM/1HdZvtYElT8Q/8o9TY0mvMrEuj35WzM/1HdZvtYElT8Q/8o9TY0mvMrEuj35WzM/1HdZvtYElT8Q/8o9TY0mvMrEuj2UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.70062214 -0.21237117 1.1642101 ]\n [ 0.70062214 -0.21237117 1.1642101 ]\n [ 0.70062214 -0.21237117 1.1642101 ]\n [ 0.70062214 -0.21237117 1.1642101 ]]", "desired_goal": "[[-0.4153703 0.95600986 -0.5667584 ]\n [-0.5849378 0.72951627 -1.5059525 ]\n [ 0.02644251 0.05425029 0.21621792]\n [ 0.5818898 0.77754974 -1.8155329 ]]", "observation": "[[ 0.70062214 -0.21237117 1.1642101 0.09911931 -0.01016552 0.09119566]\n [ 0.70062214 -0.21237117 1.1642101 0.09911931 -0.01016552 0.09119566]\n [ 0.70062214 -0.21237117 1.1642101 0.09911931 -0.01016552 0.09119566]\n [ 0.70062214 -0.21237117 1.1642101 0.09911931 -0.01016552 0.09119566]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAjBnMPfQimb08ukg+6FSlvQP0Bj6ONpI+4CpqPAowILtsjTc+Xph0vEz4BD7v1GA9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.0996581 -0.0747737 0.19602293]\n [-0.08072835 0.1317902 0.28557247]\n [ 0.01429245 -0.00244427 0.17925042]\n [-0.01492891 0.12985343 0.05489057]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVnQMAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIFD/G3LVkKsCUhpRSlIwBbJRLMowBdJRHP+rpEhJRO1x1fZQoaAZoCWgPQwh1V3bB4IouwJSGlFKUaBVLMmgWRz/nOoo/iYLLdX2UKGgGaAloD0MINQu0O6QIH8CUhpRSlGgVSzJoFkc/42g13t8eCHV9lChoBmgJaA9DCAzIXu/+iCDAlIaUUpRoFUsyaBZHP99gOSW7e2x1fZQoaAZoCWgPQwj/6nHfagUkwJSGlFKUaBVLMmgWRz/1RhQWN3nqdX2UKGgGaAloD0MIkxlvK70OKsCUhpRSlGgVSzJoFkc/825mRNh3JXV9lChoBmgJaA9DCEYkCi3r5izAlIaUUpRoFUsyaBZHP/GGyX2M85l1fZQoaAZoCWgPQwjb+uk/a7YpwJSGlFKUaBVLMmgWRz/vVeKKpDNRdX2UKGgGaAloD0MIC9XNxd92JsCUhpRSlGgVSzJoFkdAADHjp9qk/XV9lChoBmgJaA9DCC3uPzIduijAlIaUUpRoFUsyaBZHP/6ctXgccVB1fZQoaAZoCWgPQwhQcLGiBjMkwJSGlFKUaBVLMmgWRz/8uPJaJQ+EdX2UKGgGaAloD0MIs7YpHheFIcCUhpRSlGgVSzJoFkc/+uLuQZGayHV9lChoBmgJaA9DCOdvQiECriLAlIaUUpRoFUsyaBZHQAakMLF4s3B1fZQoaAZoCWgPQwg3jILg8Z0bwJSGlFKUaBVLMmgWR0AFupuMuOCHdX2UKGgGaAloD0MIKbAApgwsLcCUhpRSlGgVSzJoFkdABM3BHkLhJnV9lChoBmgJaA9DCGl0B7EzxSjAlIaUUpRoFUsyaBZHQAPiqhlDneV1fZQoaAZoCWgPQwgNcEG2LFckwJSGlFKUaBVLMmgWR0ANHpyIYWLxdX2UKGgGaAloD0MI2SWqtwauNMCUhpRSlGgVSzJoFkdADDVkMCtA9nV9lChoBmgJaA9DCFQ2rKks+hTAlIaUUpRoFUsyaBZHQAtDJU5uIh11fZQoaAZoCWgPQwj+YOC59+wwwJSGlFKUaBVLMmgWR0AKV5WzWwu/dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -9.262862909212709, "std_reward": 2.548080471235218, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-18T12:59:32.231139"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 3056
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b5a9edee64f7d8ba4241a20abe445c946ba07788a1074dcdaf5da435f338eae5
|
3 |
size 3056
|