update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: openai/whisper-tiny
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- marsyas/gtzan
|
8 |
+
metrics:
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: whisper-tiny-finetuned-gtzan
|
12 |
+
results:
|
13 |
+
- task:
|
14 |
+
name: Audio Classification
|
15 |
+
type: audio-classification
|
16 |
+
dataset:
|
17 |
+
name: GTZAN
|
18 |
+
type: marsyas/gtzan
|
19 |
+
config: all
|
20 |
+
split: train
|
21 |
+
args: all
|
22 |
+
metrics:
|
23 |
+
- name: Accuracy
|
24 |
+
type: accuracy
|
25 |
+
value: 0.91
|
26 |
+
---
|
27 |
+
|
28 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
29 |
+
should probably proofread and complete it, then remove this comment. -->
|
30 |
+
|
31 |
+
# whisper-tiny-finetuned-gtzan
|
32 |
+
|
33 |
+
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the GTZAN dataset.
|
34 |
+
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 0.6420
|
36 |
+
- Accuracy: 0.91
|
37 |
+
|
38 |
+
## Model description
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Intended uses & limitations
|
43 |
+
|
44 |
+
More information needed
|
45 |
+
|
46 |
+
## Training and evaluation data
|
47 |
+
|
48 |
+
More information needed
|
49 |
+
|
50 |
+
## Training procedure
|
51 |
+
|
52 |
+
### Training hyperparameters
|
53 |
+
|
54 |
+
The following hyperparameters were used during training:
|
55 |
+
- learning_rate: 0.0001
|
56 |
+
- train_batch_size: 8
|
57 |
+
- eval_batch_size: 8
|
58 |
+
- seed: 42
|
59 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
60 |
+
- lr_scheduler_type: linear
|
61 |
+
- lr_scheduler_warmup_steps: 10
|
62 |
+
- num_epochs: 10
|
63 |
+
|
64 |
+
### Training results
|
65 |
+
|
66 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
67 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
68 |
+
| 1.9835 | 0.33 | 37 | 1.4610 | 0.62 |
|
69 |
+
| 1.5031 | 0.65 | 74 | 1.1531 | 0.63 |
|
70 |
+
| 1.1644 | 0.98 | 111 | 0.8526 | 0.73 |
|
71 |
+
| 0.9035 | 1.31 | 148 | 0.8748 | 0.69 |
|
72 |
+
| 0.7942 | 1.64 | 185 | 0.7811 | 0.78 |
|
73 |
+
| 0.8435 | 1.96 | 222 | 0.8262 | 0.7 |
|
74 |
+
| 0.5999 | 2.29 | 259 | 0.6450 | 0.72 |
|
75 |
+
| 0.6187 | 2.62 | 296 | 0.6616 | 0.79 |
|
76 |
+
| 0.6329 | 2.95 | 333 | 0.6479 | 0.81 |
|
77 |
+
| 0.3549 | 3.27 | 370 | 0.6246 | 0.78 |
|
78 |
+
| 0.3362 | 3.6 | 407 | 0.5348 | 0.81 |
|
79 |
+
| 0.3329 | 3.93 | 444 | 0.4657 | 0.85 |
|
80 |
+
| 0.2224 | 4.26 | 481 | 0.4433 | 0.89 |
|
81 |
+
| 0.208 | 4.58 | 518 | 0.6448 | 0.84 |
|
82 |
+
| 0.1983 | 4.91 | 555 | 0.6080 | 0.86 |
|
83 |
+
| 0.1736 | 5.24 | 592 | 0.6201 | 0.86 |
|
84 |
+
| 0.0976 | 5.57 | 629 | 0.6952 | 0.87 |
|
85 |
+
| 0.025 | 5.89 | 666 | 0.5872 | 0.9 |
|
86 |
+
| 0.0509 | 6.22 | 703 | 0.5845 | 0.91 |
|
87 |
+
| 0.1474 | 6.55 | 740 | 0.6800 | 0.89 |
|
88 |
+
| 0.0594 | 6.88 | 777 | 0.6280 | 0.87 |
|
89 |
+
| 0.0023 | 7.2 | 814 | 0.6850 | 0.88 |
|
90 |
+
| 0.0058 | 7.53 | 851 | 0.6766 | 0.89 |
|
91 |
+
| 0.023 | 7.86 | 888 | 0.8498 | 0.87 |
|
92 |
+
| 0.0272 | 8.19 | 925 | 0.7815 | 0.86 |
|
93 |
+
| 0.0011 | 8.51 | 962 | 0.6570 | 0.9 |
|
94 |
+
| 0.0012 | 8.84 | 999 | 0.6395 | 0.91 |
|
95 |
+
| 0.023 | 9.17 | 1036 | 0.6412 | 0.91 |
|
96 |
+
| 0.0009 | 9.5 | 1073 | 0.6416 | 0.91 |
|
97 |
+
| 0.001 | 9.82 | 1110 | 0.6420 | 0.91 |
|
98 |
+
|
99 |
+
|
100 |
+
### Framework versions
|
101 |
+
|
102 |
+
- Transformers 4.31.0
|
103 |
+
- Pytorch 2.0.1+cu118
|
104 |
+
- Datasets 2.14.3
|
105 |
+
- Tokenizers 0.13.3
|