Update README.md
Browse files
README.md
CHANGED
@@ -1,6 +1,54 @@
|
|
1 |
---
|
2 |
-
license:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
|
|
5 |
|
6 |
-
|
|
|
1 |
---
|
2 |
+
license: apache-2.0
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
pipeline_tag: image generation
|
6 |
+
tags:
|
7 |
+
- mamba
|
8 |
+
- generative model
|
9 |
+
- stable diffusion
|
10 |
+
- stochastic interpolant
|
11 |
+
- zigma
|
12 |
+
- zigzag
|
13 |
+
|
14 |
---
|
15 |
+
# ZigMa: Zigzag Mamba Diffusion Model
|
16 |
+
|
17 |
+
This model represents the official checkpoint of the paper titled "ZigMa: Zigzag Mamba Diffusion Model".
|
18 |
+
|
19 |
+
[![Website](doc/badges/badge-website.svg)](https://https://taohu.me/project_zigma)
|
20 |
+
[![GitHub](https://img.shields.io/github/stars/prs-eth/Marigold?style=default&label=GitHub%20★&logo=github)](https://github.com/dongzhuoyao/zigma)
|
21 |
+
[![Paper](doc/badges/badge-pdf.svg)](https://arxiv.orgg)
|
22 |
+
[![License](https://img.shields.io/badge/License-Apache--2.0-929292)](https://www.apache.org/licenses/LICENSE-2.0)
|
23 |
+
|
24 |
+
|
25 |
+
[Bingxin Ke](http://www.kebingxin.com/),
|
26 |
+
[Anton Obukhov](https://www.obukhov.ai/),
|
27 |
+
[Shengyu Huang](https://shengyuh.github.io/),
|
28 |
+
[Nando Metzger](https://nandometzger.github.io/),
|
29 |
+
[Rodrigo Caye Daudt](https://rcdaudt.github.io/),
|
30 |
+
[Konrad Schindler](https://scholar.google.com/citations?user=FZuNgqIAAAAJ&hl=en )
|
31 |
+
|
32 |
+
We present Marigold, a diffusion model and associated fine-tuning protocol for monocular depth estimation. Its core principle is to leverage the rich visual knowledge stored in modern generative image models. Our model, derived from Stable Diffusion and fine-tuned with synthetic data, can zero-shot transfer to unseen data, offering state-of-the-art monocular depth estimation results.
|
33 |
+
|
34 |
+
![teaser](doc/teaser_collage_transparant.png)
|
35 |
+
|
36 |
+
|
37 |
+
## 🎓 Citation
|
38 |
+
|
39 |
+
```bibtex
|
40 |
+
@InProceedings{ke2023repurposing,
|
41 |
+
title={Repurposing Diffusion-Based Image Generators for Monocular Depth Estimation},
|
42 |
+
author={Bingxin Ke and Anton Obukhov and Shengyu Huang and Nando Metzger and Rodrigo Caye Daudt and Konrad Schindler},
|
43 |
+
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
|
44 |
+
year={2024}
|
45 |
+
}
|
46 |
+
```
|
47 |
+
|
48 |
+
## 🎫 License
|
49 |
+
|
50 |
+
This work is licensed under the Apache License, Version 2.0 (as defined in the [LICENSE](LICENSE.txt)).
|
51 |
|
52 |
+
By downloading and using the code and model you agree to the terms in the [LICENSE](LICENSE.txt).
|
53 |
|
54 |
+
[![License](https://img.shields.io/badge/License-Apache--2.0-929292)](https://www.apache.org/licenses/LICENSE-2.0)
|