ppo-LunarLander-v2 / config.json
taohu88's picture
Upload PPO LunarLander-v2 trained agent
f37c6ae
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7970aee8de10>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7970aee8dea0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7970aee8df30>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7970aee8dfc0>", "_build": "<function ActorCriticPolicy._build at 0x7970aee8e050>", "forward": "<function ActorCriticPolicy.forward at 0x7970aee8e0e0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7970aee8e170>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7970aee8e200>", "_predict": "<function ActorCriticPolicy._predict at 0x7970aee8e290>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7970aee8e320>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7970aee8e3b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7970aee8e440>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7970aee86580>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 5013504, "_total_timesteps": 5000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690160636687833537, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANuegr419yc/eA8EvtXqGL86sLy+SlIwPAAAAAAAAAAAzVmBPOyxtrlYMdA8tpX7OBcWAryG/QE4AACAPwAAgD9mFHO8rm2+ur4rgrLN5TOvSbwdOdi+7jIAAIA/AACAP5pJIjvXtRe7kXGjPMcQNj0ix0Y8fmIYvgAAgD8AAIA/ZjSCPM/ZDrzZDBC+3uWcOzk4Zz1sH5G8AACAPwAAgD8g5D++cUBlPlWokj42BZu+bGLRvfBmJz4AAAAAAAAAAGZbyTwYCaM9ipNPvtIQu76K7T2+wylAvAAAAAAAAAAA5nYfvT83jT/PcB6+qdoxv/MbMLw6MRu9AAAAAAAAAADNqN+719o3uxLHnjztkJk8AnmbPCaIgr0AAIA/AACAP2Y6dr0tgpQ++Ts1vFkMtr6raty9YOPqPAAAAAAAAAAAGupCvaRKP7vsXzo9hyC7PH01QLx/dp89AACAPwAAgD/tZ5Y+VxAJP/4dt76Uqx+/3kArPvgwc74AAAAAAAAAADODszxIl5K6VK8rORzuHTRse9m6cAVHuAAAgD8AAIA/mkRfvWfc9z5S/tY8JTjWvqzhrbzY8U29AAAAAAAAAAB6mRk+uMqEP7Uz8D3WkSa/UTSnPj8Mtr0AAAAAAAAAAABw+zsKJzW56pTPPSegkr52H/G8rp+gPAAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0027007999999999477, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHK21A/s3Q6MAWyUS9aMAXSUR0CwNxWZ/kNndX2UKGgGR0B0ITtG/etTaAdL0mgIR0CwNxnP3SKFdX2UKGgGR0BxkO+vhZQpaAdLy2gIR0CwN1ylSCOFdX2UKGgGR0By+5p8F6iTaAdLw2gIR0CwN1rA1vVFdX2UKGgGR0BxKcw1zhgmaAdLxWgIR0CwN25WJaaDdX2UKGgGR0BxvZocrAgxaAdNGwFoCEdAsDdx54W1t3V9lChoBkdAcfe+85CF9WgHS8xoCEdAsDedj4Hoo3V9lChoBkdAcPqmr8zhxmgHS75oCEdAsDesZtNzsHV9lChoBkdAcnAB1s+FDmgHS69oCEdAsDfHxQSBb3V9lChoBkdAc3cbQC0WuWgHS71oCEdAsDfMRAbADnV9lChoBkdAcDaVafSQYGgHS7RoCEdAsDfWkCV8kXV9lChoBkdAcLCzch1TzmgHS9RoCEdAsDfsXWOIZnV9lChoBkdAdAX9qk/KQ2gHS7poCEdAsDf8DKYAsHV9lChoBkdAcsxV32VVxWgHS+VoCEdAsDf9QUHpr3V9lChoBkdAcvgS7oSteWgHS/FoCEdAsDgXO6d1+3V9lChoBkdAc1eF1SwW32gHS8doCEdAsDguKsMiKXV9lChoBkdAc9h0Re1KG2gHS9ZoCEdAsDhW3LFGX3V9lChoBkdAc1K40/GEPGgHS61oCEdAsDhcdOqNqHV9lChoBkdAc1RY4yXUpmgHS+5oCEdAsDh1rl/6PHV9lChoBkdAcyUJhOP/72gHS8RoCEdAsDiNpyp71XV9lChoBkdAc9p1rZamoGgHS9xoCEdAsDie9L6DXnV9lChoBkdAc8+Oq//Nq2gHS75oCEdAsD0LKLbYb3V9lChoBkdAcPVI9TxXn2gHS+hoCEdAsD0bv/io9HV9lChoBkdAcrmW7e2uxWgHS7NoCEdAsD0nqrzXjHV9lChoBkdAcHxmxt52QmgHS9hoCEdAsD1AYvWYnnV9lChoBkdAcaN6uGKyfWgHS7VoCEdAsD1KDBdld3V9lChoBkdAcnEX1anrIGgHS8poCEdAsD1TljmSyXV9lChoBkdAbtNR3u/lAGgHS99oCEdAsD1j6SDAanV9lChoBkdAcLkwjdHlO2gHS9doCEdAsD2LvAoG6nV9lChoBkdAcxzqeK8+R2gHS9ZoCEdAsD2Lied073V9lChoBkdAcmdM8YAKfGgHS+FoCEdAsD2z9uP3jHV9lChoBkdAcCyeg+Qlr2gHS9ZoCEdAsD27x0+1SnV9lChoBkdAb56tW+49YGgHS8doCEdAsD3NrVOKwnV9lChoBkdAcDTxNqQA/GgHS81oCEdAsD3dZid8RnV9lChoBkdAchx3vQWvbGgHS7hoCEdAsD3vrVvuPXV9lChoBkdAcumDl5nlGWgHS71oCEdAsD4HzwtrbnV9lChoBkdAdASmQ8wHq2gHS8BoCEdAsD4zPkaMrHV9lChoBkdAcRivyLAHmmgHS/JoCEdAsD4/jCHh0nV9lChoBkdAcbbdxAB1cWgHS8VoCEdAsD5nH6uW8nV9lChoBkdAb/O+49X9zmgHS9ZoCEdAsD57tw71ZnV9lChoBkdAc+38kUsWf2gHS81oCEdAsD6cXHim23V9lChoBkdAcQZzpHI6sGgHS9VoCEdAsD67M7lq8HV9lChoBkdAcJXJHy3CsWgHS7poCEdAsD7kI7eVLXV9lChoBkdAcHtLoOhCdGgHS9hoCEdAsD7rBGhEjXV9lChoBkdAc6eDLKV6eGgHS8RoCEdAsD76g2606nV9lChoBkdAc7mHjIaLoGgHS+xoCEdAsD79v2oNu3V9lChoBkdAcyKO2AoXsWgHS6hoCEdAsD8GouPFN3V9lChoBkdActpHfdhy82gHS7RoCEdAsD8T+JgssnV9lChoBkdAcBid43WFvmgHS7toCEdAsD9SUzKs+3V9lChoBkdAcXyqU/wAl2gHS65oCEdAsD9U+4b0e3V9lChoBkdAcIy74SHuZ2gHS8toCEdAsD9h03fhuXV9lChoBkdAcrIZm7J4jmgHS79oCEdAsD+W9oN/fHV9lChoBkdAcmQ3z+WGAWgHS8doCEdAsD/PKFIuoXV9lChoBkdAcjuYQarFO2gHS7NoCEdAsD/qSNfgJnV9lChoBkdAcy1xpL26CmgHS9NoCEdAsD/0WnCO3nV9lChoBkdAccg6EJ0GNmgHS61oCEdAsD//R6Ww/3V9lChoBkdAcHwTTOPeYWgHS85oCEdAsEAPOmixmnV9lChoBkdAcntFkQPI4mgHS9BoCEdAsEBovRJEpnV9lChoBkdAcyWk43m3fGgHS8BoCEdAsEBtF7Uoa3V9lChoBkdAb1ZxtHhCMWgHS7doCEdAsEB87ihnJ3V9lChoBkdAcj6zlLeyiWgHS8doCEdAsECz39JjD3V9lChoBkdAb+eB4lhPTGgHS9ZoCEdAsEC35/LDAXV9lChoBkdAcLd1JUYKpmgHS+FoCEdAsEDAVRDTjXV9lChoBkdAc17u+AVfu2gHS9loCEdAsEDCiVSn+HV9lChoBkdAdAjZmZmZmmgHS9VoCEdAsEEeGlANX3V9lChoBkdAcg7ECNjslmgHS9poCEdAsEEnBXS0B3V9lChoBkdAc34EAo5PuWgHS9VoCEdAsEEogbIcR3V9lChoBkdAcQb7HQyAQWgHS65oCEdAsEE9UWEbpHV9lChoBkdAc5qjLjghr2gHS7BoCEdAsEFQeyRjjXV9lChoBkdAcVuPEsJ6Y2gHS+FoCEdAsEFdD6WPcXV9lChoBkdActsZG8VYZGgHS75oCEdAsEFq72+PBHV9lChoBkdAco56nBLwnmgHS8doCEdAsEGJ4Y77sXV9lChoBkdAcRz/ZM+NcWgHS+FoCEdAsEGkN7SiNHV9lChoBkdAcnhlS0jTrmgHS8RoCEdAsEHCTSsr/nV9lChoBkdAcPHi1y/9HmgHS89oCEdAsEHVS75EdHV9lChoBkdAcyD5hjOLSGgHS7FoCEdAsEHVbgTAWXV9lChoBkdAcKpQFs54nmgHS7doCEdAsEHhk5IYnHV9lChoBkdAcIQMibDuSmgHS9doCEdAsEHrE87p3XV9lChoBkdAczsog3cYZWgHS8doCEdAsEIBFYuCgHV9lChoBkdAcRcWznied2gHS9hoCEdAsEIZNnGsFXV9lChoBkdAcMfXFLnLaGgHS85oCEdAsEJRoh6jWXV9lChoBkdAc0P1OCXhO2gHS9doCEdAsEJhzgdfcHV9lChoBkdAcoCmknCwbGgHS+poCEdAsEJ1M6BAfXV9lChoBkdAcYLuoxYaHmgHS8BoCEdAsEKt/WlMy3V9lChoBkdAcyVzq8lHBmgHS/doCEdAsEKtP/JeV3V9lChoBkdAcqp9sabWmWgHS9hoCEdAsEKxd5Y5k3V9lChoBkdAcpuiFTNt7GgHS71oCEdAsELF60IC2nV9lChoBkdAcpZJiRW912gHS/loCEdAsELHcj7hvXV9lChoBkdAcsj2zv7WNGgHS/5oCEdAsELapqASWnV9lChoBkdAc4O2KEWZZ2gHS9FoCEdAsEL/5CWu5nV9lChoBkdAct6br1M/QmgHS89oCEdAsEMRozvZy3V9lChoBkdAcPL4EwFkhGgHS9BoCEdAsEMgUEgW8HV9lChoBkdAcHwknCwbEWgHS99oCEdAsEMqlBQem3V9lChoBkdAcBd1J17pmmgHS8JoCEdAsEM/vfCQ93V9lChoBkdAcy7s+V1OkGgHS+toCEdAsENPtu1nd3V9lChoBkdAcNEAeq7yx2gHS+JoCEdAsENWgCfYjHV9lChoBkdAcGRALApKBmgHS7hoCEdAsENlsi0OVnV9lChoBkdAbd5zasZHeGgHS8RoCEdAsEOUJ2MbWHV9lChoBkdAb5Wv3ai9I2gHS9BoCEdAsEOTGhmGunV9lChoBkdAcmOlQ/HHWGgHS71oCEdAsEO63jMmnnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1224, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}