|
--- |
|
language: et |
|
license: cc-by-4.0 |
|
base_model: google-bert/bert-base-cased |
|
widget: |
|
- text: "Miks [MASK] ei taha mind kuulata?" |
|
|
|
--- |
|
|
|
--- |
|
# EstBERT |
|
|
|
|
|
### What's this? |
|
The EstBERT model is a pretrained BERT<sub>Base</sub> model exclusively trained on Estonian cased corpus on both 128 and 512 sequence length of data. |
|
|
|
### How to use? |
|
You can use the model transformer library both in tensorflow and pytorch version. |
|
``` |
|
from transformers import AutoTokenizer, AutoModelForMaskedLM |
|
tokenizer = AutoTokenizer.from_pretrained("tartuNLP/EstBERT") |
|
model = AutoModelForMaskedLM.from_pretrained("tartuNLP/EstBERT") |
|
``` |
|
You can also download the pretrained model from here, [EstBERT_128]() [EstBERT_512]() |
|
#### Dataset used to train the model |
|
The EstBERT model is trained both on 128 and 512 sequence length of data. For training the EstBERT we used the [Estonian National Corpus 2017](https://metashare.ut.ee/repository/browse/estonian-national-corpus-2017/b616ceda30ce11e8a6e4005056b40024880158b577154c01bd3d3fcfc9b762b3/), which was the largest Estonian language corpus available at the time. It consists of four sub-corpora: Estonian Reference Corpus 1990-2008, Estonian Web Corpus 2013, Estonian Web Corpus 2017 and Estonian Wikipedia Corpus 2017. |
|
|
|
### Reference to cite |
|
|
|
[Tanvir et al 2021](https://aclanthology.org/2021.nodalida-main.2) |
|
|
|
### Why would I use? |
|
Overall EstBERT performs better in parts of speech (POS), name entity recognition (NER), rubric, and sentiment classification tasks compared to mBERT and XLM-RoBERTa. The comparative results can be found below; |
|
|
|
|Model |UPOS |XPOS |Morph |bf UPOS |bf XPOS |Morph | |
|
|--------------|----------------------------|-------------|-------------|-------------|----------------------------|----------------------------| |
|
| EstBERT | **_97.89_** | **98.40** | **96.93** | **97.84** | **_98.43_** | **_96.80_** | |
|
| mBERT | 97.42 | 98.06 | 96.24 | 97.43 | 98.13 | 96.13 | |
|
| XLM-RoBERTa | 97.78 | 98.36 | 96.53 | 97.80 | 98.40 | 96.69 | |
|
|
|
|
|
|Model|Rubric<sub>128</sub> |Sentiment<sub>128</sub> | Rubric<sub>128</sub> |Sentiment<sub>512</sub> | |
|
|-------------------|----------------------------|--------------------|-----------------------------------------------|----------------------------| |
|
| EstBERT | **_81.70_** | 74.36 | **80.96** | 74.50 | |
|
| mBERT | 75.67 | 70.23 | 74.94 | 69.52 | |
|
| XLM\-RoBERTa | 80.34 | **74.50** | 78.62 | **_76.07_**| |
|
|
|
|Model |Precicion<sub>128</sub> |Recall<sub>128</sub> |F1-Score<sub>128</sub> |Precision<sub>512</sub> |Recall<sub>512</sub> |F1-Score<sub>512</sub> | |
|
|--------------|----------------|----------------------------|----------------------------|----------------------------|-------------|----------------| |
|
| EstBERT | **88.42** | 90.38 |**_89.39_** | 88.35 | 89.74 | 89.04 | |
|
| mBERT | 85.88 | 87.09 | 86.51 |**_88.47_** | 88.28 | 88.37 | |
|
| XLM\-RoBERTa | 87.55 |**_91.19_** | 89.34 | 87.50 | **90.76** | **89.10** | |
|
|
|
|
|
## BibTeX entry and citation info |
|
|
|
``` |
|
@misc{tanvir2020estbert, |
|
title={EstBERT: A Pretrained Language-Specific BERT for Estonian}, |
|
author={Hasan Tanvir and Claudia Kittask and Kairit Sirts}, |
|
year={2020}, |
|
eprint={2011.04784}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|