Commit
·
16a9ddb
1
Parent(s):
a6df402
update model card README.md
Browse files
README.md
CHANGED
@@ -16,8 +16,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
16 |
|
17 |
This model is a fine-tuned version of [TalTechNLP/xls-r-300m-et](https://huggingface.co/TalTechNLP/xls-r-300m-et) on an unknown dataset.
|
18 |
It achieves the following results on the evaluation set:
|
19 |
-
- Loss: 0.
|
20 |
-
- Wer: 0.
|
21 |
|
22 |
## Model description
|
23 |
|
@@ -36,7 +36,7 @@ More information needed
|
|
36 |
### Training hyperparameters
|
37 |
|
38 |
The following hyperparameters were used during training:
|
39 |
-
- learning_rate:
|
40 |
- train_batch_size: 32
|
41 |
- eval_batch_size: 8
|
42 |
- seed: 42
|
@@ -44,50 +44,50 @@ The following hyperparameters were used during training:
|
|
44 |
- total_train_batch_size: 64
|
45 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
46 |
- lr_scheduler_type: linear
|
47 |
-
- lr_scheduler_warmup_steps:
|
48 |
- num_epochs: 60
|
49 |
|
50 |
### Training results
|
51 |
|
52 |
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
53 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
|
54 |
-
| 0.
|
55 |
-
| 0.
|
56 |
-
| 0.
|
57 |
-
| 0.
|
58 |
-
| 0.
|
59 |
-
| 0.
|
60 |
-
| 0.
|
61 |
-
| 0.
|
62 |
-
| 0.
|
63 |
-
| 0.
|
64 |
-
| 0.
|
65 |
-
| 0.
|
66 |
-
| 0.
|
67 |
-
| 0.
|
68 |
-
| 0.
|
69 |
-
| 0.
|
70 |
-
| 0.
|
71 |
-
| 0.
|
72 |
-
| 0.
|
73 |
-
| 0.
|
74 |
-
| 0.
|
75 |
-
| 0.
|
76 |
-
| 0.
|
77 |
-
| 0.
|
78 |
-
| 0.
|
79 |
-
| 0.
|
80 |
-
| 0.
|
81 |
-
| 0.
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
-
| 0.
|
86 |
-
| 0.
|
87 |
-
| 0.
|
88 |
-
| 0.
|
89 |
-
| 0.
|
90 |
-
| 0.
|
91 |
|
92 |
|
93 |
### Framework versions
|
|
|
16 |
|
17 |
This model is a fine-tuned version of [TalTechNLP/xls-r-300m-et](https://huggingface.co/TalTechNLP/xls-r-300m-et) on an unknown dataset.
|
18 |
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.1926
|
20 |
+
- Wer: 0.1430
|
21 |
|
22 |
## Model description
|
23 |
|
|
|
36 |
### Training hyperparameters
|
37 |
|
38 |
The following hyperparameters were used during training:
|
39 |
+
- learning_rate: 2e-05
|
40 |
- train_batch_size: 32
|
41 |
- eval_batch_size: 8
|
42 |
- seed: 42
|
|
|
44 |
- total_train_batch_size: 64
|
45 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
46 |
- lr_scheduler_type: linear
|
47 |
+
- lr_scheduler_warmup_steps: 200
|
48 |
- num_epochs: 60
|
49 |
|
50 |
### Training results
|
51 |
|
52 |
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
53 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
|
54 |
+
| 0.3485 | 1.61 | 100 | 0.2034 | 0.1782 |
|
55 |
+
| 0.1914 | 3.22 | 200 | 0.1818 | 0.1606 |
|
56 |
+
| 0.1641 | 4.83 | 300 | 0.1770 | 0.1572 |
|
57 |
+
| 0.1479 | 6.45 | 400 | 0.1745 | 0.1546 |
|
58 |
+
| 0.1374 | 8.06 | 500 | 0.1751 | 0.1538 |
|
59 |
+
| 0.1244 | 9.67 | 600 | 0.1734 | 0.1518 |
|
60 |
+
| 0.1211 | 11.29 | 700 | 0.1753 | 0.1508 |
|
61 |
+
| 0.1096 | 12.9 | 800 | 0.1758 | 0.1483 |
|
62 |
+
| 0.1059 | 14.51 | 900 | 0.1771 | 0.1469 |
|
63 |
+
| 0.0991 | 16.13 | 1000 | 0.1776 | 0.1469 |
|
64 |
+
| 0.0965 | 17.74 | 1100 | 0.1759 | 0.1469 |
|
65 |
+
| 0.0944 | 19.35 | 1200 | 0.1784 | 0.1459 |
|
66 |
+
| 0.0902 | 20.96 | 1300 | 0.1799 | 0.1469 |
|
67 |
+
| 0.0867 | 22.58 | 1400 | 0.1814 | 0.1440 |
|
68 |
+
| 0.0817 | 24.19 | 1500 | 0.1828 | 0.1438 |
|
69 |
+
| 0.0802 | 25.8 | 1600 | 0.1845 | 0.1438 |
|
70 |
+
| 0.0762 | 27.42 | 1700 | 0.1843 | 0.1431 |
|
71 |
+
| 0.0774 | 29.03 | 1800 | 0.1839 | 0.1432 |
|
72 |
+
| 0.0741 | 30.64 | 1900 | 0.1843 | 0.1442 |
|
73 |
+
| 0.0718 | 32.26 | 2000 | 0.1846 | 0.1429 |
|
74 |
+
| 0.07 | 33.86 | 2100 | 0.1852 | 0.1429 |
|
75 |
+
| 0.0692 | 35.48 | 2200 | 0.1872 | 0.1435 |
|
76 |
+
| 0.0671 | 37.1 | 2300 | 0.1874 | 0.1433 |
|
77 |
+
| 0.0667 | 38.7 | 2400 | 0.1887 | 0.1435 |
|
78 |
+
| 0.066 | 40.32 | 2500 | 0.1880 | 0.1422 |
|
79 |
+
| 0.0628 | 41.93 | 2600 | 0.1897 | 0.1426 |
|
80 |
+
| 0.0643 | 43.54 | 2700 | 0.1910 | 0.1428 |
|
81 |
+
| 0.0643 | 45.16 | 2800 | 0.1900 | 0.1431 |
|
82 |
+
| 0.0638 | 46.77 | 2900 | 0.1900 | 0.1427 |
|
83 |
+
| 0.0601 | 48.38 | 3000 | 0.1911 | 0.1431 |
|
84 |
+
| 0.0593 | 49.99 | 3100 | 0.1914 | 0.1432 |
|
85 |
+
| 0.0606 | 51.61 | 3200 | 0.1912 | 0.1433 |
|
86 |
+
| 0.0609 | 53.22 | 3300 | 0.1912 | 0.1431 |
|
87 |
+
| 0.0587 | 54.83 | 3400 | 0.1921 | 0.1429 |
|
88 |
+
| 0.0567 | 56.45 | 3500 | 0.1924 | 0.1430 |
|
89 |
+
| 0.0611 | 58.06 | 3600 | 0.1927 | 0.1431 |
|
90 |
+
| 0.0581 | 59.67 | 3700 | 0.1926 | 0.1430 |
|
91 |
|
92 |
|
93 |
### Framework versions
|