Sentence Similarity
sentence-transformers
Safetensors
English
modernbert
feature-extraction
Generated from Trainer
dataset_size:6661966
loss:MultipleNegativesRankingLoss
loss:CachedMultipleNegativesRankingLoss
loss:SoftmaxLoss
loss:AnglELoss
loss:CoSENTLoss
loss:CosineSimilarityLoss
Inference Endpoints
File size: 233,876 Bytes
b19d152 9ba3d26 b19d152 fbb9fc4 b19d152 9ba3d26 b19d152 9ba3d26 b19d152 9ba3d26 b19d152 0a60567 9ba3d26 0a60567 9ba3d26 b19d152 9ba3d26 b19d152 9ba3d26 b19d152 9ba3d26 b19d152 9ba3d26 0a60567 fbb9fc4 b19d152 9ba3d26 b19d152 9ba3d26 b19d152 9ba3d26 b19d152 9ba3d26 0a60567 fbb9fc4 b19d152 9ba3d26 b19d152 9ba3d26 b19d152 fbb9fc4 b19d152 9ba3d26 b19d152 0a60567 b19d152 0a60567 b19d152 9ba3d26 0a60567 fbb9fc4 b19d152 fbb9fc4 0a60567 fbb9fc4 b19d152 fbb9fc4 b19d152 fbb9fc4 b19d152 0a60567 b19d152 0a60567 b19d152 fbb9fc4 9ba3d26 b19d152 0a60567 b19d152 9ba3d26 b19d152 0a60567 b19d152 fbb9fc4 b19d152 fbb9fc4 b19d152 0a60567 b19d152 0a60567 b19d152 9ba3d26 b19d152 0a60567 b19d152 9ba3d26 b19d152 9ba3d26 b19d152 0a60567 b19d152 0a60567 b19d152 9ba3d26 b19d152 9ba3d26 b19d152 0a60567 b19d152 0a60567 b19d152 9ba3d26 b19d152 9ba3d26 b19d152 0a60567 b19d152 0a60567 b19d152 9ba3d26 b19d152 9ba3d26 b19d152 9ba3d26 b19d152 9ba3d26 b19d152 9ba3d26 b19d152 9ba3d26 b19d152 9ba3d26 b19d152 9ba3d26 b19d152 0a60567 b19d152 9ba3d26 b19d152 0a60567 b19d152 9ba3d26 b19d152 0a60567 b19d152 0a60567 9ba3d26 0a60567 b19d152 fbb9fc4 9ba3d26 b19d152 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 |
---
language:
- en
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:6661966
- loss:MultipleNegativesRankingLoss
- loss:CachedMultipleNegativesRankingLoss
- loss:SoftmaxLoss
- loss:AnglELoss
- loss:CoSENTLoss
- loss:CosineSimilarityLoss
base_model: answerdotai/ModernBERT-base
widget:
- source_sentence: Daniel went to the kitchen. Sandra went back to the kitchen. Daniel
moved to the garden. Sandra grabbed the apple. Sandra went back to the office.
Sandra dropped the apple. Sandra went to the garden. Sandra went back to the bedroom.
Sandra went back to the office. Mary went back to the office. Daniel moved to
the bathroom. Sandra grabbed the apple. Sandra travelled to the garden. Sandra
put down the apple there. Mary went back to the bathroom. Daniel travelled to
the garden. Mary took the milk. Sandra grabbed the apple. Mary left the milk there.
Sandra journeyed to the bedroom. John travelled to the office. John went back
to the garden. Sandra journeyed to the garden. Mary grabbed the milk. Mary left
the milk. Mary grabbed the milk. Mary went to the hallway. John moved to the hallway.
Mary picked up the football. Sandra journeyed to the kitchen. Sandra left the
apple. Mary discarded the milk. John journeyed to the garden. Mary dropped the
football. Daniel moved to the bathroom. Daniel journeyed to the kitchen. Mary
travelled to the bathroom. Daniel went to the bedroom. Mary went to the hallway.
Sandra got the apple. Sandra went back to the hallway. Mary moved to the kitchen.
Sandra dropped the apple there. Sandra grabbed the milk. Sandra journeyed to the
bathroom. John went back to the kitchen. Sandra went to the kitchen. Sandra travelled
to the bathroom. Daniel went to the garden. Daniel moved to the kitchen. Sandra
dropped the milk. Sandra got the milk. Sandra put down the milk. John journeyed
to the garden. Sandra went back to the hallway. Sandra picked up the apple. Sandra
got the football. Sandra moved to the garden. Daniel moved to the bathroom. Daniel
travelled to the garden. Sandra went back to the bathroom. Sandra discarded the
football.
sentences:
- In the adulthood stage, it can jump, walk, run
- The chocolate is bigger than the container.
- The football before the bathroom was in the garden.
- source_sentence: Almost everywhere the series converges then .
sentences:
- The series then converges almost everywhere .
- Scrivener dated the manuscript to the 12th century , C. R. Gregory to the 13th
century . Currently the manuscript is dated by the INTF to the 12th century .
- Both daughters died before he did , Tosca in 1976 and Janear in 1981 .
- source_sentence: how are you i'm doing good thank you you im not good having cough
and colg
sentences:
- 'This example tweet expresses the emotion: happiness'
- This example utterance is about cooking recipies.
- This example text from a US presidential speech is about macroeconomics
- source_sentence: A man is doing pull-ups
sentences:
- The man is doing exercises in a gym
- A black and white dog with a large branch is running in the field
- There is no man drawing
- source_sentence: A chef is preparing some food
sentences:
- The man is lifting weights
- A chef is preparing a meal
- A dog is in a sandy area with the sand that is being stirred up into the air and
several plants are in the background
datasets:
- tomaarsen/natural-questions-hard-negatives
- tomaarsen/gooaq-hard-negatives
- bclavie/msmarco-500k-triplets
- sentence-transformers/all-nli
- sentence-transformers/msmarco-co-condenser-margin-mse-sym-mnrl-mean-v1
- sentence-transformers/gooaq
- sentence-transformers/natural-questions
- tasksource/merged-2l-nli
- tasksource/merged-3l-nli
- tasksource/zero-shot-label-nli
- MoritzLaurer/dataset_train_nli
- google-research-datasets/paws
- nyu-mll/glue
- mwong/fever-evidence-related
- tasksource/sts-companion
pipeline_tag: sentence-similarity
library_name: sentence-transformers
---
# SentenceTransformer based on answerdotai/ModernBERT-base
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on the [tomaarsen/natural-questions-hard-negatives](https://huggingface.co/datasets/tomaarsen/natural-questions-hard-negatives), [tomaarsen/gooaq-hard-negatives](https://huggingface.co/datasets/tomaarsen/gooaq-hard-negatives), [bclavie/msmarco-500k-triplets](https://huggingface.co/datasets/bclavie/msmarco-500k-triplets), [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli), [sentence-transformers/msmarco-co-condenser-margin-mse-sym-mnrl-mean-v1](https://huggingface.co/datasets/sentence-transformers/msmarco-co-condenser-margin-mse-sym-mnrl-mean-v1), [sentence-transformers/gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq), [sentence-transformers/natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions), [merged-2l-nli](https://huggingface.co/datasets/tasksource/merged-2l-nli), [merged-3l-nli](https://huggingface.co/datasets/tasksource/merged-3l-nli), [zero-shot-label-nli](https://huggingface.co/datasets/tasksource/zero-shot-label-nli), [dataset_train_nli](https://huggingface.co/datasets/MoritzLaurer/dataset_train_nli), [paws/labeled_final](https://huggingface.co/datasets/paws), [glue/mrpc](https://huggingface.co/datasets/glue), [glue/qqp](https://huggingface.co/datasets/glue), [fever-evidence-related](https://huggingface.co/datasets/mwong/fever-evidence-related), [glue/stsb_0](https://huggingface.co/datasets/glue), [glue/stsb_1](https://huggingface.co/datasets/glue), [glue/stsb_2](https://huggingface.co/datasets/glue), sick/relatedness_0, sick/relatedness_1, sick/relatedness_2, [sts-companion_0](https://huggingface.co/datasets/tasksource/sts-companion), [sts-companion_1](https://huggingface.co/datasets/tasksource/sts-companion) and [sts-companion_2](https://huggingface.co/datasets/tasksource/sts-companion) datasets. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) <!-- at revision 6e461621ae9e2dffc138de99490e9baee354deb5 -->
- **Maximum Sequence Length:** 8192 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Datasets:**
- [tomaarsen/natural-questions-hard-negatives](https://huggingface.co/datasets/tomaarsen/natural-questions-hard-negatives)
- [tomaarsen/gooaq-hard-negatives](https://huggingface.co/datasets/tomaarsen/gooaq-hard-negatives)
- [bclavie/msmarco-500k-triplets](https://huggingface.co/datasets/bclavie/msmarco-500k-triplets)
- [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli)
- [sentence-transformers/msmarco-co-condenser-margin-mse-sym-mnrl-mean-v1](https://huggingface.co/datasets/sentence-transformers/msmarco-co-condenser-margin-mse-sym-mnrl-mean-v1)
- [sentence-transformers/gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq)
- [sentence-transformers/natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions)
- [merged-2l-nli](https://huggingface.co/datasets/tasksource/merged-2l-nli)
- [merged-3l-nli](https://huggingface.co/datasets/tasksource/merged-3l-nli)
- [zero-shot-label-nli](https://huggingface.co/datasets/tasksource/zero-shot-label-nli)
- [dataset_train_nli](https://huggingface.co/datasets/MoritzLaurer/dataset_train_nli)
- [paws/labeled_final](https://huggingface.co/datasets/paws)
- [glue/mrpc](https://huggingface.co/datasets/glue)
- [glue/qqp](https://huggingface.co/datasets/glue)
- [fever-evidence-related](https://huggingface.co/datasets/mwong/fever-evidence-related)
- [glue/stsb_0](https://huggingface.co/datasets/glue)
- [glue/stsb_1](https://huggingface.co/datasets/glue)
- [glue/stsb_2](https://huggingface.co/datasets/glue)
- sick/relatedness_0
- sick/relatedness_1
- sick/relatedness_2
- [sts-companion_0](https://huggingface.co/datasets/tasksource/sts-companion)
- [sts-companion_1](https://huggingface.co/datasets/tasksource/sts-companion)
- [sts-companion_2](https://huggingface.co/datasets/tasksource/sts-companion)
- **Language:** en
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: ModernBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("tasksource/ModernBERT-base-embed")
# Run inference
sentences = [
'A chef is preparing some food',
'A chef is preparing a meal',
'A dog is in a sandy area with the sand that is being stirred up into the air and several plants are in the background',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Datasets
#### tomaarsen/natural-questions-hard-negatives
* Dataset: [tomaarsen/natural-questions-hard-negatives](https://huggingface.co/datasets/tomaarsen/natural-questions-hard-negatives) at [52dfa09](https://huggingface.co/datasets/tomaarsen/natural-questions-hard-negatives/tree/52dfa09a3d5d3f90e7e115c407ccebe30fe79764)
* Size: 96,658 training samples
* Columns: <code>query</code>, <code>answer</code>, <code>negative_1</code>, <code>negative_2</code>, <code>negative_3</code>, <code>negative_4</code>, and <code>negative_5</code>
* Approximate statistics based on the first 1000 samples:
| | query | answer | negative_1 | negative_2 | negative_3 | negative_4 | negative_5 |
|:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
| type | string | string | string | string | string | string | string |
| details | <ul><li>min: 10 tokens</li><li>mean: 12.52 tokens</li><li>max: 26 tokens</li></ul> | <ul><li>min: 17 tokens</li><li>mean: 137.85 tokens</li><li>max: 556 tokens</li></ul> | <ul><li>min: 23 tokens</li><li>mean: 144.11 tokens</li><li>max: 1035 tokens</li></ul> | <ul><li>min: 13 tokens</li><li>mean: 142.73 tokens</li><li>max: 832 tokens</li></ul> | <ul><li>min: 15 tokens</li><li>mean: 146.37 tokens</li><li>max: 649 tokens</li></ul> | <ul><li>min: 19 tokens</li><li>mean: 145.79 tokens</li><li>max: 549 tokens</li></ul> | <ul><li>min: 19 tokens</li><li>mean: 142.01 tokens</li><li>max: 574 tokens</li></ul> |
* Samples:
| query | answer | negative_1 | negative_2 | negative_3 | negative_4 | negative_5 |
|:----------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>when did richmond last play in a preliminary final</code> | <code>Richmond Football Club Richmond began 2017 with 5 straight wins, a feat it had not achieved since 1995. A series of close losses hampered the Tigers throughout the middle of the season, including a 5-point loss to the Western Bulldogs, 2-point loss to Fremantle, and a 3-point loss to the Giants. Richmond ended the season strongly with convincing victories over Fremantle and St Kilda in the final two rounds, elevating the club to 3rd on the ladder. Richmond's first final of the season against the Cats at the MCG attracted a record qualifying final crowd of 95,028; the Tigers won by 51 points. Having advanced to the first preliminary finals for the first time since 2001, Richmond defeated Greater Western Sydney by 36 points in front of a crowd of 94,258 to progress to the Grand Final against Adelaide, their first Grand Final appearance since 1982. The attendance was 100,021, the largest crowd to a grand final since 1986. The Crows led at quarter time and led by as many as 13, but the Tig...</code> | <code>Brisbane Bears However, the club was still struggling off-field. One of the Bears' biggest problems was its lack of support (both on and off the field) in Melbourne, the location of most of its away matches. In mid-1996, the struggling Fitzroy Football Club collapsed due to financial pressures and was seeking to merge its assets with another club. When a merger with North Melbourne in forming the North Fitzroy Kangaroos failed to win the support of the other AFL clubs, a deal for a merger was done between Fitzroy and the Bears. The new team was known as the Brisbane Lions, based at the Gabba, with Northey as the coach of the merged club. As such, the history of the Brisbane Bears as an individual entity ended after the 1996 season, with ten seasons of competition and the third-place finish in 1996 as its best performance. The Bears last match as a separate entity was a preliminary final on Saturday 21 September 1996 at the Melbourne Cricket Ground (where the Bears played their first VF...</code> | <code>Virginia Tech–West Virginia football rivalry Virginia Tech held the trophy in six of the nine years in which it was contested, but West Virginia leads the all-time series 28–23–1. The last game was played on September 3, 2017 at FedEx Field in Landover, MD; Virginia Tech won 31–24.</code> | <code>Martin Truex Jr. To start off the Round of 12, Truex scored his 6th win of the season at Charlotte after leading 91 out of 334 laps to secure a spot for the Round of 8. Just two weeks later, he scored another win at Kansas despite having a restart violation early in the race.</code> | <code>Adelaide Football Club Star midfielder for many years Patrick Dangerfield left the club at the end of the 2015 season (a season in which he won the club's best and fairest) and Don Pyke, a former premiership player and assistant coach with West Coast who had also been an assistant coach at Adelaide from 2005 to 2006, was appointed Adelaide's senior coach for at least three years.[9] Adelaide was widely tipped to slide out of the finals in 2016[27][28][29] but the Crows proved to be one of the successes of the season, comfortably qualifying for a home elimination final and defeating North Melbourne by 62 points, before being eliminated the next week by eventual beaten grand finalists, Sydney in the semi-finals. The club had a dominant 2017 season, winning their opening six games and never falling below second place for the entire season. Adelaide claimed their second McClelland Trophy as minor premiers.[30] The Adelaide Crows entered the 2017 finals series as favourites for the premiers...</code> | <code>Battle of Appomattox Court House The Battle of Appomattox Court House (Virginia, U.S.), fought on the morning of April 9, 1865, was one of the last battles of the American Civil War (1861–1865). It was the final engagement of Confederate States Army General-in-Chief, Robert E. Lee, and his Army of Northern Virginia before it surrendered to the Union Army of the Potomac under the Commanding General of the United States, Ulysses S. Grant. Lee, having abandoned the Confederate capital of Richmond, Virginia, after the nine and one-half month Siege of Petersburg and Richmond, retreated west, hoping to join his army with the remaining Confederate forces in North Carolina, the Army of Tennessee under Gen. Joseph E. Johnston. Union infantry and cavalry forces under Gen. Philip Sheridan pursued and cut off the Confederates' retreat at the central Virginia village of Appomattox Court House. Lee launched a last-ditch attack to break through the Union forces to his front, assuming the Union forc...</code> |
| <code>who sang what in the world's come over you</code> | <code>Jack Scott (singer) At the beginning of 1960, Scott again changed record labels, this time to Top Rank Records.[1] He then recorded four Billboard Hot 100 hits – "What in the World's Come Over You" (#5), "Burning Bridges" (#3) b/w "Oh Little One" (#34), and "It Only Happened Yesterday" (#38).[1] "What in the World's Come Over You" was Scott's second gold disc winner.[6] Scott continued to record and perform during the 1960s and 1970s.[1] His song "You're Just Gettin' Better" reached the country charts in 1974.[1] In May 1977, Scott recorded a Peel session for BBC Radio 1 disc jockey, John Peel.</code> | <code>Lover, You Should've Come Over "Lover, You Should've Come Over" is the seventh track on Jeff Buckley's album Grace. Inspired by the ending of the relationship between Buckley and Rebecca Moore,[1] it concerns the despondency of a young man growing older, finding that his actions represent a perspective he feels that he should have outgrown. Biographer and critic David Browne describes the lyrics as "confused and confusing" and the music as "a languid beauty."[1]</code> | <code>It's Christmas (All Over The World) "It's Christmas (All Over The World)" is a song recorded by Scottish singer Sheena Easton. It was released in November 1985 as the theme song from the soundtrack of Santa Claus: The Movie. The song was written by Bill House and John Hobbs.</code> | <code>The End of the World (Skeeter Davis song) "The End of the World" is a country pop song written by Arthur Kent and Sylvia Dee, for American singer Skeeter Davis. It had success in the 1960s and spawned many covers.</code> | <code>Israel Kamakawiwoʻole His voice became famous outside Hawaii when his album Facing Future was released in 1993. His medley of "Somewhere Over the Rainbow/What a Wonderful World" was released on his albums Ka ʻAnoʻi and Facing Future. It was subsequently featured in several films, television programs, and television commercials.</code> | <code>Make the World Go Away "Make the World Go Away'" is a country-popular music song composed by Hank Cochran. It has become a Top 40 popular success three times: for Timi Yuro (during 1963), for Eddy Arnold (1965), and for the brother-sister duo Donny and Marie Osmond (1975). The original version of the song was recorded by Ray Price during 1963. It has remained a country crooner standard ever since.</code> |
| <code>who produces the most wool in the world</code> | <code>Wool Global wool production is about 2 million tonnes per year, of which 60% goes into apparel. Wool comprises ca 3% of the global textile market, but its value is higher owing to dying and other modifications of the material.[1] Australia is a leading producer of wool which is mostly from Merino sheep but has been eclipsed by China in terms of total weight.[30] New Zealand (2016) is the third-largest producer of wool, and the largest producer of crossbred wool. Breeds such as Lincoln, Romney, Drysdale, and Elliotdale produce coarser fibers, and wool from these sheep is usually used for making carpets.</code> | <code>Baa, Baa, Black Sheep As with many nursery rhymes, attempts have been made to find origins and meanings for the rhyme, most which have no corroborating evidence.[1] Katherine Elwes Thomas in The Real Personages of Mother Goose (1930) suggested that the rhyme referred to resentment at the heavy taxation on wool.[5] This has particularly been taken to refer to the medieval English "Great" or "Old Custom" wool tax of 1275, which survived until the fifteenth century.[1] More recently the rhyme has been connected to the slave trade, particularly in the southern United States.[6] This explanation was advanced during debates over political correctness and the use and reform of nursery rhymes in the 1980s, but has no supporting historical evidence.[7] Rather than being negative, the wool of black sheep may have been prized as it could be made into dark cloth without dyeing.[6]</code> | <code>Raymond Group Raymond Group is an Indian branded fabric and fashion retailer, incorporated in 1925. It produces suiting fabric, with a capacity of producing 31 million meters of wool and wool-blended fabrics. Gautam Singhania is the chairman and managing director of the Raymond group.[3]</code> | <code>Silk in the Indian subcontinent Silk in the Indian subcontinent is a luxury good. In India, about 97% of the raw mulberry silk is produced in the five Indian states of Karnataka, Andhra Pradesh, Tamil Nadu, West Bengal and Jammu and Kashmir.[1] Mysore and North Bangalore, the upcoming site of a US$20 million "Silk City", contribute to a majority of silk production.[2] Another emerging silk producer is Tamil Nadu where mulberry cultivation is concentrated in Salem, Erode and Dharmapuri districts. Hyderabad, Andhra Pradesh and Gobichettipalayam, Tamil Nadu were the first locations to have automated silk reeling units.[3] yoyo quantity:::</code> | <code>F. W. Woolworth Company The two Woolworth brothers pioneered and developed merchandising, direct purchasing, sales, and customer service practices commonly used today. Despite its growing to be one of the largest retail chains in the world through most of the 20th century, increased competition led to its decline beginning in the 1980s, while its sporting goods division grew. The chain went out of business in July 1997, when the company decided to focus primarily on sporting goods and renamed itself Venator Group. By 2001, the company focused exclusively on the sporting goods market, changing its name to the present Foot Locker, Inc., changing its ticker symbol from its familiar Z in 2003 to its present ticker (NYSE:Â FL).</code> | <code>Silk Silk's absorbency makes it comfortable to wear in warm weather and while active. Its low conductivity keeps warm air close to the skin during cold weather. It is often used for clothing such as shirts, ties, blouses, formal dresses, high fashion clothes, lining, lingerie, pajamas, robes, dress suits, sun dresses and Eastern folk costumes. For practical use, silk is excellent as clothing that protects from many biting insects that would ordinarily pierce clothing, such as mosquitoes and horseflies.</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
#### tomaarsen/gooaq-hard-negatives
* Dataset: [tomaarsen/gooaq-hard-negatives](https://huggingface.co/datasets/tomaarsen/gooaq-hard-negatives) at [87594a1](https://huggingface.co/datasets/tomaarsen/gooaq-hard-negatives/tree/87594a1e6c58e88b5843afa9da3a97ffd75d01c2)
* Size: 500,000 training samples
* Columns: <code>question</code>, <code>answer</code>, <code>negative_1</code>, <code>negative_2</code>, <code>negative_3</code>, <code>negative_4</code>, and <code>negative_5</code>
* Approximate statistics based on the first 1000 samples:
| | question | answer | negative_1 | negative_2 | negative_3 | negative_4 | negative_5 |
|:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
| type | string | string | string | string | string | string | string |
| details | <ul><li>min: 8 tokens</li><li>mean: 11.99 tokens</li><li>max: 22 tokens</li></ul> | <ul><li>min: 15 tokens</li><li>mean: 57.82 tokens</li><li>max: 138 tokens</li></ul> | <ul><li>min: 14 tokens</li><li>mean: 57.42 tokens</li><li>max: 125 tokens</li></ul> | <ul><li>min: 14 tokens</li><li>mean: 56.84 tokens</li><li>max: 120 tokens</li></ul> | <ul><li>min: 14 tokens</li><li>mean: 57.08 tokens</li><li>max: 155 tokens</li></ul> | <ul><li>min: 15 tokens</li><li>mean: 57.54 tokens</li><li>max: 129 tokens</li></ul> | <ul><li>min: 14 tokens</li><li>mean: 58.23 tokens</li><li>max: 195 tokens</li></ul> |
* Samples:
| question | answer | negative_1 | negative_2 | negative_3 | negative_4 | negative_5 |
|:---------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>is toprol xl the same as metoprolol?</code> | <code>Metoprolol succinate is also known by the brand name Toprol XL. It is the extended-release form of metoprolol. Metoprolol succinate is approved to treat high blood pressure, chronic chest pain, and congestive heart failure.</code> | <code>Secondly, metoprolol and metoprolol ER have different brand-name equivalents: Brand version of metoprolol: Lopressor. Brand version of metoprolol ER: Toprol XL.</code> | <code>Pill with imprint 1 is White, Round and has been identified as Metoprolol Tartrate 25 mg.</code> | <code>Interactions between your drugs No interactions were found between Allergy Relief and metoprolol. This does not necessarily mean no interactions exist. Always consult your healthcare provider.</code> | <code>Metoprolol is a type of medication called a beta blocker. It works by relaxing blood vessels and slowing heart rate, which improves blood flow and lowers blood pressure. Metoprolol can also improve the likelihood of survival after a heart attack.</code> | <code>Metoprolol starts to work after about 2 hours, but it can take up to 1 week to fully take effect. You may not feel any different when you take metoprolol, but this doesn't mean it's not working. It's important to keep taking your medicine.</code> |
| <code>are you experienced cd steve hoffman?</code> | <code>The Are You Experienced album was apparently mastered from the original stereo UK master tapes (according to Steve Hoffman - one of the very few who has heard both the master tapes and the CDs produced over the years). ... The CD booklets were a little sparse, but at least they stayed true to the album's original design.</code> | <code>I Saw the Light. Showcasing the unique talent and musical influence of country-western artist Hank Williams, this candid biography also sheds light on the legacy of drug abuse and tormented relationships that contributes to the singer's legend.</code> | <code>(Read our ranking of his top 10.) And while Howard dresses the part of director, any notion of him as a tortured auteur or dictatorial taskmasker — the clichés of the Hollywood director — are tossed aside. He's very nice.</code> | <code>He was a music star too. Where're you people born and brought up? We 're born and brought up here in Anambra State at Nkpor town, near Onitsha.</code> | <code>At the age of 87 he has now retired from his live shows and all the traveling involved. And although he still picks up his Martin Guitar and does a show now and then, his life is now devoted to writing his memoirs.</code> | <code>The owner of the mysterious voice behind all these videos is a man who's seen a lot, visiting a total of 56 intimate celebrity spaces over the course of five years. His name is Joe Sabia — that's him in the photo — and he's currently the VP of creative development at Condé Nast Entertainment.</code> |
| <code>how are babushka dolls made?</code> | <code>Matryoshka dolls are made of wood from lime, balsa, alder, aspen, and birch trees; lime is probably the most common wood type. ... After cutting, the trees are stripped of most of their bark, although a few inner rings of bark are left to bind the wood and keep it from splitting.</code> | <code>A quick scan of the auction and buy-it-now listings on eBay finds porcelain doll values ranging from around $5 and $10 to several thousand dollars or more but no dolls listed above $10,000.</code> | <code>Japanese dolls are called as ningyō in Japanese and literally translates to 'human form'.</code> | <code>Matyoo: All Fresno Girl dolls come just as real children are born.</code> | <code>As of September 2016, there are over 100 characters. The main toy line includes 13-inch Dolls, the mini-series, and a variety of mini play-sets and plush dolls as well as Lalaloopsy Littles, smaller siblings of the 13-inch dolls. A spin-off known as "Lala-Oopsies" came out in late 2012.</code> | <code>LOL dolls are little baby dolls that come wrapped inside a surprise toy ball. Each ball has layers that contain stickers, secret messages, mix and match accessories–and finally–a doll. ... The doll on the ball is almost never the doll inside. Dolls are released in series, so not every doll is available all the time.</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
#### bclavie/msmarco-500k-triplets
* Dataset: [bclavie/msmarco-500k-triplets](https://huggingface.co/datasets/bclavie/msmarco-500k-triplets) at [cb1a85c](https://huggingface.co/datasets/bclavie/msmarco-500k-triplets/tree/cb1a85c1261fa7c65f4ea43f94e50f8b467c372f)
* Size: 500,000 training samples
* Columns: <code>query</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
| | query | positive | negative |
|:--------|:---------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 4 tokens</li><li>mean: 9.31 tokens</li><li>max: 31 tokens</li></ul> | <ul><li>min: 20 tokens</li><li>mean: 82.19 tokens</li><li>max: 216 tokens</li></ul> | <ul><li>min: 18 tokens</li><li>mean: 78.99 tokens</li><li>max: 209 tokens</li></ul> |
* Samples:
| query | positive | negative |
|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>the most important factor that influences k+ secretion is __________.</code> | <code>The regulation of K+ distribution between the intracellular and extracellular space is referred to as internal K+ balance. The most important factors regulating this movement under normal conditions are insulin and catecholamines (1).</code> | <code>They are both also important for secretion and flow of bile: 1 Cholecystokinin: The name of this hormone describes its effect on the biliary system-cholecysto = gallbladder and kinin = movement. 2 Secretin: This hormone is secreted in response to acid in the duodenum.</code> |
| <code>how much did the mackinac bridge cost to build</code> | <code>The cost to design the project was $3,500,000 (Steinman Company). The cost to construct the bridge was $70, 268,500. Two primary contractors were hired to build the bridge: American Bridge for superstructure - $44,532,900; and Merritt-Chapman and Scott of New York for the foundations - $25,735,600.</code> | <code>When your child needs a dental tooth bridge, you need to know the average cost so you can factor the price into your budget. Several factors affect the price of a bridge, which can run between $700 to $1,500 per tooth. If you have insurance or your child is covered by Medicaid, part of the cost may be covered.</code> |
| <code>when do concussion symptoms appear</code> | <code>Then you can get advice on what to do next. For milder symptoms, the doctor may recommend rest and ask you to watch your child closely for changes, such as a headache that gets worse. Symptoms of a concussion don't always show up right away, and can develop within 24 to 72 hours after an injury.</code> | <code>Concussion: A traumatic injury to soft tissue, usually the brain, as a result of a violent blow, shaking, or spinning. A brain concussion can cause immediate but temporary impairment of brain functions, such as thinking, vision, equilibrium, and consciousness. After a person has had a concussion, he or she is at increased risk for recurrence. Moreover, after a person has several concussions, less of a blow can cause injury, and the person can require more time to recover.</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
#### sentence-transformers/all-nli
* Dataset: [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
* Size: 500,000 training samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | negative |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 7 tokens</li><li>mean: 10.46 tokens</li><li>max: 46 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 12.91 tokens</li><li>max: 40 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 13.49 tokens</li><li>max: 51 tokens</li></ul> |
* Samples:
| anchor | positive | negative |
|:---------------------------------------------------------------------------|:-------------------------------------------------|:-----------------------------------------------------------|
| <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is outdoors, on a horse.</code> | <code>A person is at a diner, ordering an omelette.</code> |
| <code>Children smiling and waving at camera</code> | <code>There are children present</code> | <code>The kids are frowning</code> |
| <code>A boy is jumping on skateboard in the middle of a red bridge.</code> | <code>The boy does a skateboarding trick.</code> | <code>The boy skates down the sidewalk.</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
#### sentence-transformers/msmarco-co-condenser-margin-mse-sym-mnrl-mean-v1
* Dataset: [sentence-transformers/msmarco-co-condenser-margin-mse-sym-mnrl-mean-v1](https://huggingface.co/datasets/sentence-transformers/msmarco-co-condenser-margin-mse-sym-mnrl-mean-v1) at [84ed2d3](https://huggingface.co/datasets/sentence-transformers/msmarco-co-condenser-margin-mse-sym-mnrl-mean-v1/tree/84ed2d35626f617d890bd493b4d6db69a741e0e2)
* Size: 500,000 training samples
* Columns: <code>query</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
| | query | positive | negative |
|:--------|:---------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 5 tokens</li><li>mean: 9.87 tokens</li><li>max: 16 tokens</li></ul> | <ul><li>min: 44 tokens</li><li>mean: 85.25 tokens</li><li>max: 211 tokens</li></ul> | <ul><li>min: 18 tokens</li><li>mean: 81.18 tokens</li><li>max: 227 tokens</li></ul> |
* Samples:
| query | positive | negative |
|:----------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>what are the liberal arts?</code> | <code>liberal arts. 1. the academic course of instruction at a college intended to provide general knowledge and comprising the arts, humanities, natural sciences, and social sciences, as opposed to professional or technical subjects.</code> | <code>Rather than preparing students for a specific career, liberal arts programs focus on cultural literacy and hone communication and analytical skills. They often cover various disciplines, ranging from the humanities to social sciences. 1 Program Levels in Liberal Arts: Associate degree, Bachelor's degree, Master's degree.</code> |
| <code>what are the liberal arts?</code> | <code>liberal arts. 1. the academic course of instruction at a college intended to provide general knowledge and comprising the arts, humanities, natural sciences, and social sciences, as opposed to professional or technical subjects.</code> | <code>Artes Liberales: The historical basis for the modern liberal arts, consisting of the trivium (grammar, logic, and rhetoric) and the quadrivium (arithmetic, geometry, astronomy, and music). General Education: That part of a liberal education curriculum that is shared by all students.</code> |
| <code>what are the liberal arts?</code> | <code>liberal arts. 1. the academic course of instruction at a college intended to provide general knowledge and comprising the arts, humanities, natural sciences, and social sciences, as opposed to professional or technical subjects.</code> | <code>Liberal Arts. Upon completion of the Liberal Arts degree, students will be able to express ideas in coherent, creative, and appropriate forms, orally and in writing. Students will be able to apply their reading abilities in order to interconnect an understanding of resources to academic, professional, and personal interests.</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
#### sentence-transformers/gooaq
* Dataset: [sentence-transformers/gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq) at [b089f72](https://huggingface.co/datasets/sentence-transformers/gooaq/tree/b089f728748a068b7bc5234e5bcf5b25e3c8279c)
* Size: 500,000 training samples
* Columns: <code>question</code> and <code>answer</code>
* Approximate statistics based on the first 1000 samples:
| | question | answer |
|:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 8 tokens</li><li>mean: 12.19 tokens</li><li>max: 22 tokens</li></ul> | <ul><li>min: 13 tokens</li><li>mean: 58.34 tokens</li><li>max: 124 tokens</li></ul> |
* Samples:
| question | answer |
|:---------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>is toprol xl the same as metoprolol?</code> | <code>Metoprolol succinate is also known by the brand name Toprol XL. It is the extended-release form of metoprolol. Metoprolol succinate is approved to treat high blood pressure, chronic chest pain, and congestive heart failure.</code> |
| <code>are you experienced cd steve hoffman?</code> | <code>The Are You Experienced album was apparently mastered from the original stereo UK master tapes (according to Steve Hoffman - one of the very few who has heard both the master tapes and the CDs produced over the years). ... The CD booklets were a little sparse, but at least they stayed true to the album's original design.</code> |
| <code>how are babushka dolls made?</code> | <code>Matryoshka dolls are made of wood from lime, balsa, alder, aspen, and birch trees; lime is probably the most common wood type. ... After cutting, the trees are stripped of most of their bark, although a few inner rings of bark are left to bind the wood and keep it from splitting.</code> |
* Loss: [<code>CachedMultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedmultiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
#### sentence-transformers/natural-questions
* Dataset: [sentence-transformers/natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17)
* Size: 100,231 training samples
* Columns: <code>query</code> and <code>answer</code>
* Approximate statistics based on the first 1000 samples:
| | query | answer |
|:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 10 tokens</li><li>mean: 12.47 tokens</li><li>max: 23 tokens</li></ul> | <ul><li>min: 17 tokens</li><li>mean: 138.32 tokens</li><li>max: 556 tokens</li></ul> |
* Samples:
| query | answer |
|:----------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>when did richmond last play in a preliminary final</code> | <code>Richmond Football Club Richmond began 2017 with 5 straight wins, a feat it had not achieved since 1995. A series of close losses hampered the Tigers throughout the middle of the season, including a 5-point loss to the Western Bulldogs, 2-point loss to Fremantle, and a 3-point loss to the Giants. Richmond ended the season strongly with convincing victories over Fremantle and St Kilda in the final two rounds, elevating the club to 3rd on the ladder. Richmond's first final of the season against the Cats at the MCG attracted a record qualifying final crowd of 95,028; the Tigers won by 51 points. Having advanced to the first preliminary finals for the first time since 2001, Richmond defeated Greater Western Sydney by 36 points in front of a crowd of 94,258 to progress to the Grand Final against Adelaide, their first Grand Final appearance since 1982. The attendance was 100,021, the largest crowd to a grand final since 1986. The Crows led at quarter time and led by as many as 13, but the Tig...</code> |
| <code>who sang what in the world's come over you</code> | <code>Jack Scott (singer) At the beginning of 1960, Scott again changed record labels, this time to Top Rank Records.[1] He then recorded four Billboard Hot 100 hits – "What in the World's Come Over You" (#5), "Burning Bridges" (#3) b/w "Oh Little One" (#34), and "It Only Happened Yesterday" (#38).[1] "What in the World's Come Over You" was Scott's second gold disc winner.[6] Scott continued to record and perform during the 1960s and 1970s.[1] His song "You're Just Gettin' Better" reached the country charts in 1974.[1] In May 1977, Scott recorded a Peel session for BBC Radio 1 disc jockey, John Peel.</code> |
| <code>who produces the most wool in the world</code> | <code>Wool Global wool production is about 2 million tonnes per year, of which 60% goes into apparel. Wool comprises ca 3% of the global textile market, but its value is higher owing to dying and other modifications of the material.[1] Australia is a leading producer of wool which is mostly from Merino sheep but has been eclipsed by China in terms of total weight.[30] New Zealand (2016) is the third-largest producer of wool, and the largest producer of crossbred wool. Breeds such as Lincoln, Romney, Drysdale, and Elliotdale produce coarser fibers, and wool from these sheep is usually used for making carpets.</code> |
* Loss: [<code>CachedMultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedmultiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
#### merged-2l-nli
* Dataset: [merged-2l-nli](https://huggingface.co/datasets/tasksource/merged-2l-nli) at [af845c6](https://huggingface.co/datasets/tasksource/merged-2l-nli/tree/af845c6b78a8ac3ea294666c2e5132cf6d5f4af0)
* Size: 425,243 training samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | label |
|:--------|:------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:------------------------------------------------|
| type | string | string | int |
| details | <ul><li>min: 6 tokens</li><li>mean: 72.83 tokens</li><li>max: 1219 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 12.78 tokens</li><li>max: 118 tokens</li></ul> | <ul><li>0: ~55.50%</li><li>1: ~44.50%</li></ul> |
* Samples:
| sentence1 | sentence2 | label |
|:---------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------|
| <code>What type of food was cheese considered to be in Rome?</code> | <code>The staple foods were generally consumed around 11 o'clock, and consisted of bread, lettuce, cheese, fruits, nuts, and cold meat left over from the dinner the night before.[citation needed]</code> | <code>1</code> |
| <code>No Weapons of Mass Destruction Found in Iraq Yet.</code> | <code>Weapons of Mass Destruction Found in Iraq.</code> | <code>0</code> |
| <code>I stuck a pin through a carrot. When I pulled the pin out, it had a hole.</code> | <code>The carrot had a hole.</code> | <code>1</code> |
* Loss: [<code>SoftmaxLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss)
#### merged-3l-nli
* Dataset: [merged-3l-nli](https://huggingface.co/datasets/tasksource/merged-3l-nli) at [e311b1f](https://huggingface.co/datasets/tasksource/merged-3l-nli/tree/e311b1f45a8f8cc8d4b2c5b92dbc797a05bc069d)
* Size: 564,204 training samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | label |
|:--------|:-------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------|
| type | string | string | int |
| details | <ul><li>min: 5 tokens</li><li>mean: 154.01 tokens</li><li>max: 8192 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 28.37 tokens</li><li>max: 570 tokens</li></ul> | <ul><li>0: ~36.00%</li><li>1: ~31.50%</li><li>2: ~32.50%</li></ul> |
* Samples:
| sentence1 | sentence2 | label |
|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------|:---------------|
| <code>Over the nave, the two hollow pyramids appear to be designed in the style of chimneys for a castle kitchen.</code> | <code>There are seven pyramids there.</code> | <code>2</code> |
| <code>The Catch of the Season is an Edwardian musical comedy by Seymour Hicks and Cosmo Hamilton, with music by Herbert Haines and Evelyn Baker and lyrics by Charles H. Taylor, based on the fairy tale Cinderella. A debutante is engaged to a young aristocrat but loves a page.</code> | <code>Seymour Hicks was alive in 1975.</code> | <code>1</code> |
| <code>A 3600 g infant is heavy. A 2400 g infant is light.</code> | <code>A 2220 g bicycle is light.</code> | <code>1</code> |
* Loss: [<code>SoftmaxLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss)
#### zero-shot-label-nli
* Dataset: [zero-shot-label-nli](https://huggingface.co/datasets/tasksource/zero-shot-label-nli) at [b363c89](https://huggingface.co/datasets/tasksource/zero-shot-label-nli/tree/b363c895cd4b15b814b9dbd7e4466cd301c96b2a)
* Size: 1,090,333 training samples
* Columns: <code>label</code>, <code>sentence1</code>, and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | label | sentence1 | sentence2 |
|:--------|:------------------------------------------------|:------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
| type | int | string | string |
| details | <ul><li>0: ~49.30%</li><li>2: ~50.70%</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 81.11 tokens</li><li>max: 5802 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 8.08 tokens</li><li>max: 17 tokens</li></ul> |
* Samples:
| label | sentence1 | sentence2 |
|:---------------|:-----------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------|
| <code>2</code> | <code>okay</code> | <code>This example is reply_y.</code> |
| <code>2</code> | <code>We retrospectively compared 2 methods that have been proposed to screen for IA [1, 2].</code> | <code>This example is background.</code> |
| <code>2</code> | <code>PersonX puts it under PersonX's pillow PersonX then checks it again<br>Person X suffers from obsessive compulsive disorder.</code> | <code>This example is weakener.</code> |
* Loss: [<code>SoftmaxLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss)
#### dataset_train_nli
* Dataset: [dataset_train_nli](https://huggingface.co/datasets/MoritzLaurer/dataset_train_nli) at [1e00964](https://huggingface.co/datasets/MoritzLaurer/dataset_train_nli/tree/1e009645b2943106614107b06107b1ee85ac1161)
* Size: 1,018,733 training samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | label |
|:--------|:------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------|
| type | string | string | int |
| details | <ul><li>min: 4 tokens</li><li>mean: 95.56 tokens</li><li>max: 1152 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 14.05 tokens</li><li>max: 38 tokens</li></ul> | <ul><li>0: ~50.60%</li><li>1: ~49.40%</li></ul> |
* Samples:
| sentence1 | sentence2 | label |
|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------|:---------------|
| <code>where is nayagara falls located</code> | <code>The example utterance is a query about music.</code> | <code>1</code> |
| <code>Druyun gets nine-month prison sentence A former top Air Force acquisition executive today was sentenced to nine months in prison for conspiring to help Boeing Co. win a multibillion-dollar Pentagon contract.</code> | <code>This example news text is about world news</code> | <code>1</code> |
| <code>Writing on the #39;wall #39; n Last edition of the Far Eastern Economic Review is shown on the streets of Hong Kong. The weekly news magazine is to fold in its current form with the loss of 80 jobs, the magazine #39;s publisher Dow Jones said yesterday.</code> | <code>This example news text is about science and technology</code> | <code>1</code> |
* Loss: [<code>SoftmaxLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss)
#### paws/labeled_final
* Dataset: [paws/labeled_final](https://huggingface.co/datasets/paws) at [161ece9](https://huggingface.co/datasets/paws/tree/161ece9501cf0a11f3e48bd356eaa82de46d6a09)
* Size: 49,401 training samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | label |
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------|
| type | string | string | int |
| details | <ul><li>min: 10 tokens</li><li>mean: 27.44 tokens</li><li>max: 51 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 27.44 tokens</li><li>max: 51 tokens</li></ul> | <ul><li>0: ~55.60%</li><li>1: ~44.40%</li></ul> |
* Samples:
| sentence1 | sentence2 | label |
|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------|
| <code>In Paris , in October 1560 , he secretly met the English ambassador , Nicolas Throckmorton , asking him for a passport to return to England through Scotland .</code> | <code>In October 1560 , he secretly met with the English ambassador , Nicolas Throckmorton , in Paris , and asked him for a passport to return to Scotland through England .</code> | <code>0</code> |
| <code>The NBA season of 1975 -- 76 was the 30th season of the National Basketball Association .</code> | <code>The 1975 -- 76 season of the National Basketball Association was the 30th season of the NBA .</code> | <code>1</code> |
| <code>There are also specific discussions , public profile debates and project discussions .</code> | <code>There are also public discussions , profile specific discussions , and project discussions .</code> | <code>0</code> |
* Loss: [<code>SoftmaxLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss)
#### glue/mrpc
* Dataset: [glue/mrpc](https://huggingface.co/datasets/glue) at [bcdcba7](https://huggingface.co/datasets/glue/tree/bcdcba79d07bc864c1c254ccfcedcce55bcc9a8c)
* Size: 3,668 training samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | label |
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:------------------------------------------------|
| type | string | string | int |
| details | <ul><li>min: 10 tokens</li><li>mean: 27.55 tokens</li><li>max: 49 tokens</li></ul> | <ul><li>min: 12 tokens</li><li>mean: 27.25 tokens</li><li>max: 48 tokens</li></ul> | <ul><li>0: ~33.70%</li><li>1: ~66.30%</li></ul> |
* Samples:
| sentence1 | sentence2 | label |
|:-----------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------|:---------------|
| <code>Amrozi accused his brother , whom he called " the witness " , of deliberately distorting his evidence .</code> | <code>Referring to him as only " the witness " , Amrozi accused his brother of deliberately distorting his evidence .</code> | <code>1</code> |
| <code>Yucaipa owned Dominick 's before selling the chain to Safeway in 1998 for $ 2.5 billion .</code> | <code>Yucaipa bought Dominick 's in 1995 for $ 693 million and sold it to Safeway for $ 1.8 billion in 1998 .</code> | <code>0</code> |
| <code>They had published an advertisement on the Internet on June 10 , offering the cargo for sale , he added .</code> | <code>On June 10 , the ship 's owners had published an advertisement on the Internet , offering the explosives for sale .</code> | <code>1</code> |
* Loss: [<code>SoftmaxLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss)
#### glue/qqp
* Dataset: [glue/qqp](https://huggingface.co/datasets/glue) at [bcdcba7](https://huggingface.co/datasets/glue/tree/bcdcba79d07bc864c1c254ccfcedcce55bcc9a8c)
* Size: 363,846 training samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | label |
|:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------|
| type | string | string | int |
| details | <ul><li>min: 6 tokens</li><li>mean: 15.9 tokens</li><li>max: 53 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 15.73 tokens</li><li>max: 72 tokens</li></ul> | <ul><li>0: ~61.90%</li><li>1: ~38.10%</li></ul> |
* Samples:
| sentence1 | sentence2 | label |
|:------------------------------------------------------|:---------------------------------------------------------|:---------------|
| <code>What are reviews of Big Data University?</code> | <code>What is your review of Big Data University?</code> | <code>1</code> |
| <code>What are glass bottles made of?</code> | <code>How is a glass bottle made?</code> | <code>0</code> |
| <code>What do you really know about Algeria?</code> | <code>What do you know about Algeria?</code> | <code>1</code> |
* Loss: [<code>SoftmaxLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss)
#### fever-evidence-related
* Dataset: [fever-evidence-related](https://huggingface.co/datasets/mwong/fever-evidence-related) at [14aba00](https://huggingface.co/datasets/mwong/fever-evidence-related/tree/14aba009b5fcd97b1a9ee6f3e3b0da0e308cf7cb)
* Size: 403,218 training samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | label |
|:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------|
| type | string | string | int |
| details | <ul><li>min: 6 tokens</li><li>mean: 13.63 tokens</li><li>max: 39 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 353.0 tokens</li><li>max: 5023 tokens</li></ul> | <ul><li>0: ~31.80%</li><li>1: ~68.20%</li></ul> |
* Samples:
| sentence1 | sentence2 | label |
|:--------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------|
| <code>The Bridges of Madison County is a TV series.</code> | <code>Saulsbury is a town in Hardeman County , Tennessee .. Hardeman County. Hardeman County, Tennessee. Tennessee. Tennessee. County. List of counties in Tennessee. Hardeman. Hardeman County, Tennessee. The population was 99 at the 2000 census and 81 at the 2010 census showing a decrease of 18 .. United States Census, 2010. It is located along State Highway 57 in southwest Hardeman County .. Hardeman County. Hardeman County, Tennessee. State. Political divisions of the United States. County. List of counties in Tennessee. Hardeman. Hardeman County, Tennessee. State Highway 57. State Highway 57</code> | <code>1</code> |
| <code>Jessica Lange's first film role was in Godzilla.</code> | <code>Haji Ahmadov -LRB- Hacı Əhmədov , born on 23 November 1993 in Baku , Soviet Union -RRB- is an Azerbaijani football defender who plays for AZAL .. Baku. Baku. AZAL. AZAL PFK. Soviet Union. Soviet Union. Azerbaijani. Azerbaijani people. football. football ( soccer ). defender. Defender ( football )</code> | <code>1</code> |
| <code>Brad Pitt directed 12 Years a Slave.</code> | <code>The Bronze Bauhinia Star -LRB- , BBS -RRB- is the lowest rank in Order of the Bauhinia Star in Hong Kong , created in 1997 to replace the British honours system of the Order of the British Empire after the transfer of sovereignty to People 's Republic of China and the establishment of the Hong Kong Special Administrative Region -LRB- HKSAR -RRB- .. Order of the Bauhinia Star. Order of the Bauhinia Star. British honours system. British honours system. Order of the British Empire. Order of the British Empire. Special Administrative Region. Special Administrative Region of the People's Republic of China. It is awarded to persons who have given outstanding service over a long period of time , but in a more limited field or way than that required for the Silver Bauhinia Star .. Silver Bauhinia Star. Silver Bauhinia Star</code> | <code>1</code> |
* Loss: [<code>SoftmaxLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss)
#### glue/stsb_0
* Dataset: [glue/stsb_0](https://huggingface.co/datasets/glue) at [bcdcba7](https://huggingface.co/datasets/glue/tree/bcdcba79d07bc864c1c254ccfcedcce55bcc9a8c)
* Size: 5,749 training samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | label |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details | <ul><li>min: 6 tokens</li><li>mean: 15.22 tokens</li><li>max: 74 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 15.04 tokens</li><li>max: 51 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 2.74</li><li>max: 5.0</li></ul> |
* Samples:
| sentence1 | sentence2 | label |
|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------|
| <code>Snowden Hits Hurdles in Search for Asylum</code> | <code>Snowden's hits hurdles in search for asylum</code> | <code>5.0</code> |
| <code>Ukrainian protesters back in streets for anti-government rally</code> | <code>Ukraine protesters topple Lenin statue in Kiev</code> | <code>2.5999999046325684</code> |
| <code>"Biotech products, if anything, may be safer than conventional products because of all the testing," Fraley said, adding that 18 countries have adopted biotechnology.</code> | <code>"Biotech products, if anything, may be safer than conventional products because of all the testing," said Robert Fraley, Monsanto's executive vice president.</code> | <code>3.200000047683716</code> |
* Loss: [<code>AnglELoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#angleloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "pairwise_angle_sim"
}
```
#### glue/stsb_1
* Dataset: [glue/stsb_1](https://huggingface.co/datasets/glue) at [bcdcba7](https://huggingface.co/datasets/glue/tree/bcdcba79d07bc864c1c254ccfcedcce55bcc9a8c)
* Size: 5,749 training samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | label |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details | <ul><li>min: 6 tokens</li><li>mean: 15.22 tokens</li><li>max: 74 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 15.04 tokens</li><li>max: 51 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 2.74</li><li>max: 5.0</li></ul> |
* Samples:
| sentence1 | sentence2 | label |
|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------|
| <code>Snowden Hits Hurdles in Search for Asylum</code> | <code>Snowden's hits hurdles in search for asylum</code> | <code>5.0</code> |
| <code>Ukrainian protesters back in streets for anti-government rally</code> | <code>Ukraine protesters topple Lenin statue in Kiev</code> | <code>2.5999999046325684</code> |
| <code>"Biotech products, if anything, may be safer than conventional products because of all the testing," Fraley said, adding that 18 countries have adopted biotechnology.</code> | <code>"Biotech products, if anything, may be safer than conventional products because of all the testing," said Robert Fraley, Monsanto's executive vice president.</code> | <code>3.200000047683716</code> |
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
```
#### glue/stsb_2
* Dataset: [glue/stsb_2](https://huggingface.co/datasets/glue) at [bcdcba7](https://huggingface.co/datasets/glue/tree/bcdcba79d07bc864c1c254ccfcedcce55bcc9a8c)
* Size: 5,749 training samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | label |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details | <ul><li>min: 6 tokens</li><li>mean: 15.22 tokens</li><li>max: 74 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 15.04 tokens</li><li>max: 51 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 2.74</li><li>max: 5.0</li></ul> |
* Samples:
| sentence1 | sentence2 | label |
|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------|
| <code>Snowden Hits Hurdles in Search for Asylum</code> | <code>Snowden's hits hurdles in search for asylum</code> | <code>5.0</code> |
| <code>Ukrainian protesters back in streets for anti-government rally</code> | <code>Ukraine protesters topple Lenin statue in Kiev</code> | <code>2.5999999046325684</code> |
| <code>"Biotech products, if anything, may be safer than conventional products because of all the testing," Fraley said, adding that 18 countries have adopted biotechnology.</code> | <code>"Biotech products, if anything, may be safer than conventional products because of all the testing," said Robert Fraley, Monsanto's executive vice president.</code> | <code>3.200000047683716</code> |
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
```json
{
"loss_fct": "torch.nn.modules.loss.MSELoss"
}
```
#### sick/relatedness_0
* Dataset: sick/relatedness_0
* Size: 4,439 training samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | label |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details | <ul><li>min: 6 tokens</li><li>mean: 12.17 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 12.06 tokens</li><li>max: 27 tokens</li></ul> | <ul><li>min: 1.0</li><li>mean: 3.53</li><li>max: 5.0</li></ul> |
* Samples:
| sentence1 | sentence2 | label |
|:-----------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------|:-------------------------------|
| <code>The dark skinned male is standing on one hand in front of a yellow building</code> | <code>The dark skinned male is not standing on one hand in front of a yellow building</code> | <code>4.0</code> |
| <code>A man is singing and playing a guitar</code> | <code>A boy is skillfully playing a piano</code> | <code>2.299999952316284</code> |
| <code>A picture is being drawn by a man</code> | <code>The person is drawing</code> | <code>4.099999904632568</code> |
* Loss: [<code>AnglELoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#angleloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "pairwise_angle_sim"
}
```
#### sick/relatedness_1
* Dataset: sick/relatedness_1
* Size: 4,439 training samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | label |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details | <ul><li>min: 6 tokens</li><li>mean: 12.17 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 12.06 tokens</li><li>max: 27 tokens</li></ul> | <ul><li>min: 1.0</li><li>mean: 3.53</li><li>max: 5.0</li></ul> |
* Samples:
| sentence1 | sentence2 | label |
|:-----------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------|:-------------------------------|
| <code>The dark skinned male is standing on one hand in front of a yellow building</code> | <code>The dark skinned male is not standing on one hand in front of a yellow building</code> | <code>4.0</code> |
| <code>A man is singing and playing a guitar</code> | <code>A boy is skillfully playing a piano</code> | <code>2.299999952316284</code> |
| <code>A picture is being drawn by a man</code> | <code>The person is drawing</code> | <code>4.099999904632568</code> |
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
```
#### sick/relatedness_2
* Dataset: sick/relatedness_2
* Size: 4,439 training samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | label |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details | <ul><li>min: 6 tokens</li><li>mean: 12.17 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 12.06 tokens</li><li>max: 27 tokens</li></ul> | <ul><li>min: 1.0</li><li>mean: 3.53</li><li>max: 5.0</li></ul> |
* Samples:
| sentence1 | sentence2 | label |
|:-----------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------|:-------------------------------|
| <code>The dark skinned male is standing on one hand in front of a yellow building</code> | <code>The dark skinned male is not standing on one hand in front of a yellow building</code> | <code>4.0</code> |
| <code>A man is singing and playing a guitar</code> | <code>A boy is skillfully playing a piano</code> | <code>2.299999952316284</code> |
| <code>A picture is being drawn by a man</code> | <code>The person is drawing</code> | <code>4.099999904632568</code> |
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
```json
{
"loss_fct": "torch.nn.modules.loss.MSELoss"
}
```
#### sts-companion_0
* Dataset: [sts-companion_0](https://huggingface.co/datasets/tasksource/sts-companion) at [fd8beff](https://huggingface.co/datasets/tasksource/sts-companion/tree/fd8beffb788df5f6673bc688e6dcbe3690a3acc6)
* Size: 5,289 training samples
* Columns: <code>label</code>, <code>sentence1</code>, and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | label | sentence1 | sentence2 |
|:--------|:---------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | float | string | string |
| details | <ul><li>min: 0.0</li><li>mean: 3.15</li><li>max: 5.0</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 18.78 tokens</li><li>max: 79 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 16.68 tokens</li><li>max: 71 tokens</li></ul> |
* Samples:
| label | sentence1 | sentence2 |
|:-----------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>4.6</code> | <code>As a matter of urgency, therefore, the staff complement of the Interdepartmental Group attached to the Commission Secretariat should be strengthened at the earliest possible opportunity in order to ensure that all proposals for acts which are general in scope are accompanied, when considered by the College of Commissioners and on the basis of Article 299(2), by a simplified sheet outlining their potential impact.</code> | <code>Thus, it is urgent that the inter-service group staff should be strengthened very quickly at the heart of the General Secretariat of the Commission, so that all proposals to act of general scope can be accompanied, during their examination by the college on the basis of Article 299(2), a detailed impact statement.</code> |
| <code>4.0</code> | <code>Reiterating the calls made by the European Parliament in its resolution of 16 March 2000, what initiatives does the Presidency of the European Council propose to take with a view to playing a more active role so as to guarantee the full and complete application of the UN peace plan?</code> | <code>As requested by the European Parliament in its resolution of 16 March 2000, that these initiatives the presidency of the European Council is going to take to play a more active role in order to ensure the full implementation of the UN peace plan?</code> |
| <code>3.2</code> | <code>Let us, as a Europe of 15 Member States, organise ourselves in order to be able to welcome those countries who are knocking at the door into the fold under respectable conditions.</code> | <code>Let us organise itself to 15 in order to be able to welcome the right conditions for countries which are knocking on our door.</code> |
* Loss: [<code>AnglELoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#angleloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "pairwise_angle_sim"
}
```
#### sts-companion_1
* Dataset: [sts-companion_1](https://huggingface.co/datasets/tasksource/sts-companion) at [fd8beff](https://huggingface.co/datasets/tasksource/sts-companion/tree/fd8beffb788df5f6673bc688e6dcbe3690a3acc6)
* Size: 5,289 training samples
* Columns: <code>label</code>, <code>sentence1</code>, and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | label | sentence1 | sentence2 |
|:--------|:---------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | float | string | string |
| details | <ul><li>min: 0.0</li><li>mean: 3.15</li><li>max: 5.0</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 18.78 tokens</li><li>max: 79 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 16.68 tokens</li><li>max: 71 tokens</li></ul> |
* Samples:
| label | sentence1 | sentence2 |
|:-----------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>4.6</code> | <code>As a matter of urgency, therefore, the staff complement of the Interdepartmental Group attached to the Commission Secretariat should be strengthened at the earliest possible opportunity in order to ensure that all proposals for acts which are general in scope are accompanied, when considered by the College of Commissioners and on the basis of Article 299(2), by a simplified sheet outlining their potential impact.</code> | <code>Thus, it is urgent that the inter-service group staff should be strengthened very quickly at the heart of the General Secretariat of the Commission, so that all proposals to act of general scope can be accompanied, during their examination by the college on the basis of Article 299(2), a detailed impact statement.</code> |
| <code>4.0</code> | <code>Reiterating the calls made by the European Parliament in its resolution of 16 March 2000, what initiatives does the Presidency of the European Council propose to take with a view to playing a more active role so as to guarantee the full and complete application of the UN peace plan?</code> | <code>As requested by the European Parliament in its resolution of 16 March 2000, that these initiatives the presidency of the European Council is going to take to play a more active role in order to ensure the full implementation of the UN peace plan?</code> |
| <code>3.2</code> | <code>Let us, as a Europe of 15 Member States, organise ourselves in order to be able to welcome those countries who are knocking at the door into the fold under respectable conditions.</code> | <code>Let us organise itself to 15 in order to be able to welcome the right conditions for countries which are knocking on our door.</code> |
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
```
#### sts-companion_2
* Dataset: [sts-companion_2](https://huggingface.co/datasets/tasksource/sts-companion) at [fd8beff](https://huggingface.co/datasets/tasksource/sts-companion/tree/fd8beffb788df5f6673bc688e6dcbe3690a3acc6)
* Size: 5,289 training samples
* Columns: <code>label</code>, <code>sentence1</code>, and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | label | sentence1 | sentence2 |
|:--------|:---------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | float | string | string |
| details | <ul><li>min: 0.0</li><li>mean: 3.15</li><li>max: 5.0</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 18.78 tokens</li><li>max: 79 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 16.68 tokens</li><li>max: 71 tokens</li></ul> |
* Samples:
| label | sentence1 | sentence2 |
|:-----------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>4.6</code> | <code>As a matter of urgency, therefore, the staff complement of the Interdepartmental Group attached to the Commission Secretariat should be strengthened at the earliest possible opportunity in order to ensure that all proposals for acts which are general in scope are accompanied, when considered by the College of Commissioners and on the basis of Article 299(2), by a simplified sheet outlining their potential impact.</code> | <code>Thus, it is urgent that the inter-service group staff should be strengthened very quickly at the heart of the General Secretariat of the Commission, so that all proposals to act of general scope can be accompanied, during their examination by the college on the basis of Article 299(2), a detailed impact statement.</code> |
| <code>4.0</code> | <code>Reiterating the calls made by the European Parliament in its resolution of 16 March 2000, what initiatives does the Presidency of the European Council propose to take with a view to playing a more active role so as to guarantee the full and complete application of the UN peace plan?</code> | <code>As requested by the European Parliament in its resolution of 16 March 2000, that these initiatives the presidency of the European Council is going to take to play a more active role in order to ensure the full implementation of the UN peace plan?</code> |
| <code>3.2</code> | <code>Let us, as a Europe of 15 Member States, organise ourselves in order to be able to welcome those countries who are knocking at the door into the fold under respectable conditions.</code> | <code>Let us organise itself to 15 in order to be able to welcome the right conditions for countries which are knocking on our door.</code> |
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
```json
{
"loss_fct": "torch.nn.modules.loss.MSELoss"
}
```
### Evaluation Datasets
#### merged-2l-nli
* Dataset: [merged-2l-nli](https://huggingface.co/datasets/tasksource/merged-2l-nli) at [af845c6](https://huggingface.co/datasets/tasksource/merged-2l-nli/tree/af845c6b78a8ac3ea294666c2e5132cf6d5f4af0)
* Size: 4,053 evaluation samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | label |
|:--------|:------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------|
| type | string | string | int |
| details | <ul><li>min: 6 tokens</li><li>mean: 75.82 tokens</li><li>max: 1219 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 13.5 tokens</li><li>max: 158 tokens</li></ul> | <ul><li>0: ~51.00%</li><li>1: ~49.00%</li></ul> |
* Samples:
| sentence1 | sentence2 | label |
|:------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------|
| <code>What happens to the norm when a number is multiplied by p?</code> | <code>While completing Q (roughly, filling the gaps) with respect to the absolute value yields the field of real numbers, completing with respect to the p-adic norm |−|p yields the field of p-adic numbers.</code> | <code>0</code> |
| <code>The abode of the Greek gods was on the summit of Mount Olympus, in Thessaly.</code> | <code>Mount Olympus is in Thessaly.</code> | <code>1</code> |
| <code>The drain is clogged with hair. It has to be cleaned.</code> | <code>The hair has to be cleaned.</code> | <code>0</code> |
* Loss: [<code>SoftmaxLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss)
#### merged-3l-nli
* Dataset: [merged-3l-nli](https://huggingface.co/datasets/tasksource/merged-3l-nli) at [e311b1f](https://huggingface.co/datasets/tasksource/merged-3l-nli/tree/e311b1f45a8f8cc8d4b2c5b92dbc797a05bc069d)
* Size: 2,872 evaluation samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | label |
|:--------|:-------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------|
| type | string | string | int |
| details | <ul><li>min: 6 tokens</li><li>mean: 258.59 tokens</li><li>max: 8192 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 23.6 tokens</li><li>max: 430 tokens</li></ul> | <ul><li>0: ~38.20%</li><li>1: ~31.30%</li><li>2: ~30.50%</li></ul> |
* Samples:
| sentence1 | sentence2 | label |
|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------|:---------------|
| <code>But if Congress opts for debt over taxation, you can count on thoughtless commentators to denounce the interest payments on that debt as a second, and separate, outrage.</code> | <code>Everybody considers the interest on the national debt an outrage.</code> | <code>1</code> |
| <code>The 1997 KNVB Cup Final was a football match between Roda JC and Heerenveen on 8 May 1997 at De Kuip, Rotterdam. It was the final match of the 1996–97 KNVB Cup competition and the 79th KNVB Cup final. Roda won 4–2 after goals from Gerald Sibon, Ger Senden, Eric van der Luer and Maarten Schops. It was the side's first KNVB Cup trophy.</code> | <code>Roda JC kept the Cup trophy at their headquarters.</code> | <code>1</code> |
| <code>Discover Financial Services, Inc. is an American financial services company, which issues the Discover Card and operates the Discover and Pulse networks, and owns Diners Club International. Discover Card is the third largest credit card brand in the United States, when measured by cards in force, with nearly 50 million cardholders.</code> | <code>Discover Card is a way to build credit for less than 50 million cardholders</code> | <code>0</code> |
* Loss: [<code>SoftmaxLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss)
#### zero-shot-label-nli
* Dataset: [zero-shot-label-nli](https://huggingface.co/datasets/tasksource/zero-shot-label-nli) at [b363c89](https://huggingface.co/datasets/tasksource/zero-shot-label-nli/tree/b363c895cd4b15b814b9dbd7e4466cd301c96b2a)
* Size: 14,419 evaluation samples
* Columns: <code>label</code>, <code>sentence1</code>, and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | label | sentence1 | sentence2 |
|:--------|:------------------------------------------------|:-------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
| type | int | string | string |
| details | <ul><li>0: ~51.40%</li><li>2: ~48.60%</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 101.82 tokens</li><li>max: 8192 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 8.01 tokens</li><li>max: 23 tokens</li></ul> |
* Samples:
| label | sentence1 | sentence2 |
|:---------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------|
| <code>2</code> | <code>Police suspected that Shaichat , 20 , had been abducted either by Palestinians or by Israeli Arabs .<br>Nobody claimed responsibility for Schaichat 's death , but police suspect that the 20-year-old soldier was abducted either by Palestinians or Israeli Arabs .</code> | <code>This example is equivalent.</code> |
| <code>2</code> | <code>Can immorality be achieved by blocking death genes?<br>Can immortality be achieved by blocking death genes?</code> | <code>This example is not_duplicate.</code> |
| <code>2</code> | <code>can a minor sit at a bar in nj</code> | <code>This example is False.</code> |
* Loss: [<code>SoftmaxLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss)
#### dataset_train_nli
* Dataset: [dataset_train_nli](https://huggingface.co/datasets/MoritzLaurer/dataset_train_nli) at [1e00964](https://huggingface.co/datasets/MoritzLaurer/dataset_train_nli/tree/1e009645b2943106614107b06107b1ee85ac1161)
* Size: 1,018,733 evaluation samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | label |
|:--------|:------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------|
| type | string | string | int |
| details | <ul><li>min: 4 tokens</li><li>mean: 96.94 tokens</li><li>max: 1020 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 13.86 tokens</li><li>max: 38 tokens</li></ul> | <ul><li>0: ~52.50%</li><li>1: ~47.50%</li></ul> |
* Samples:
| sentence1 | sentence2 | label |
|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:---------------|
| <code>Ecoplug MAX®<br>ECOPLUG MAX® is an efficient method to prevent regroth from leaf trees.<br>- Provides 100 percent effective on all brushwood<br>- Can be used all year round<br>- Kills all unwanted leaf tree<br>- Minimizes chemical diffusion<br>- Kills the entire root system of the treated tree/stump<br>- Fully selective method<br>reduce chemical use up to 90% compared to previously used methods.<br>- Can be used all year around.<br>- Will exterminate: Alder, elm, aspen, birch, beech, lime, maple, mountain ash,sallow, poplar, ash, cherry, bird cherry, oak and more broad leafed trees<br>- Minimize the use of chemicals during treatment of trees and stumps.<br>- The product will kill off the entire root system, but only the root system. Neither people, animals or the enviromnent will be exposed to our product..</code> | <code>This text is about: root extermination</code> | <code>0</code> |
| <code>can you start f. m. eight hundred and ninety radio channel</code> | <code>The intent of this example utterance is a datetime query.</code> | <code>1</code> |
| <code>never again swings between false sentiment and unfunny madcap comedy and , along the way , expects the audience to invest in the central relationship as some kind of marriage of true minds .</code> | <code>The sentiment in this example rotten tomatoes movie review is negative</code> | <code>0</code> |
* Loss: [<code>SoftmaxLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss)
#### paws/labeled_final
* Dataset: [paws/labeled_final](https://huggingface.co/datasets/paws) at [161ece9](https://huggingface.co/datasets/paws/tree/161ece9501cf0a11f3e48bd356eaa82de46d6a09)
* Size: 8,000 evaluation samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | label |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------|
| type | string | string | int |
| details | <ul><li>min: 9 tokens</li><li>mean: 27.86 tokens</li><li>max: 51 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 27.83 tokens</li><li>max: 52 tokens</li></ul> | <ul><li>0: ~54.90%</li><li>1: ~45.10%</li></ul> |
* Samples:
| sentence1 | sentence2 | label |
|:---------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------|
| <code>Bradd Crellin represented BARLA Cumbria on a tour of Australia with 6 other players representing Britain , also on a tour of Australia .</code> | <code>Bradd Crellin also represented BARLA Great Britain on a tour through Australia on a tour through Australia with 6 other players representing Cumbria .</code> | <code>0</code> |
| <code>They were there to enjoy us and they were there to pray for us .</code> | <code>They were there for us to enjoy and they were there for us to pray .</code> | <code>1</code> |
| <code>After the end of the war in June 1902 , Higgins left Southampton in the `` SSBavarian '' in August , returning to Cape Town the following month .</code> | <code>In August , after the end of the war in June 1902 , Higgins Southampton left the `` SSBavarian '' and returned to Cape Town the following month .</code> | <code>1</code> |
* Loss: [<code>SoftmaxLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss)
#### glue/mrpc
* Dataset: [glue/mrpc](https://huggingface.co/datasets/glue) at [bcdcba7](https://huggingface.co/datasets/glue/tree/bcdcba79d07bc864c1c254ccfcedcce55bcc9a8c)
* Size: 408 evaluation samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
* Approximate statistics based on the first 408 samples:
| | sentence1 | sentence2 | label |
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:------------------------------------------------|
| type | string | string | int |
| details | <ul><li>min: 14 tokens</li><li>mean: 27.92 tokens</li><li>max: 46 tokens</li></ul> | <ul><li>min: 11 tokens</li><li>mean: 27.24 tokens</li><li>max: 43 tokens</li></ul> | <ul><li>0: ~31.62%</li><li>1: ~68.38%</li></ul> |
* Samples:
| sentence1 | sentence2 | label |
|:--------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------|:---------------|
| <code>He said the foodservice pie business doesn 't fit the company 's long-term growth strategy .</code> | <code>" The foodservice pie business does not fit our long-term growth strategy .</code> | <code>1</code> |
| <code>Magnarelli said Racicot hated the Iraqi regime and looked forward to using his long years of training in the war .</code> | <code>His wife said he was " 100 percent behind George Bush " and looked forward to using his years of training in the war .</code> | <code>0</code> |
| <code>The dollar was at 116.92 yen against the yen , flat on the session , and at 1.2891 against the Swiss franc , also flat .</code> | <code>The dollar was at 116.78 yen JPY = , virtually flat on the session , and at 1.2871 against the Swiss franc CHF = , down 0.1 percent .</code> | <code>0</code> |
* Loss: [<code>SoftmaxLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss)
#### glue/qqp
* Dataset: [glue/qqp](https://huggingface.co/datasets/glue) at [bcdcba7](https://huggingface.co/datasets/glue/tree/bcdcba79d07bc864c1c254ccfcedcce55bcc9a8c)
* Size: 40,430 evaluation samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | label |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------|
| type | string | string | int |
| details | <ul><li>min: 3 tokens</li><li>mean: 15.77 tokens</li><li>max: 48 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 16.05 tokens</li><li>max: 69 tokens</li></ul> | <ul><li>0: ~62.00%</li><li>1: ~38.00%</li></ul> |
* Samples:
| sentence1 | sentence2 | label |
|:-------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------|:---------------|
| <code>What happens to a question on Quora if it is marked as needing further improvement?</code> | <code>If Quora doesn't understand my question and marks it as needing improvement, can others still see it?</code> | <code>1</code> |
| <code>What does the open blue circle in Facebook Messenger mean?</code> | <code>"what does ""delivered"" mean on Facebook messenger?"</code> | <code>0</code> |
| <code>How do I cool my mind?</code> | <code>What is the best way to be cool?</code> | <code>0</code> |
* Loss: [<code>SoftmaxLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss)
#### fever-evidence-related
* Dataset: [fever-evidence-related](https://huggingface.co/datasets/mwong/fever-evidence-related) at [14aba00](https://huggingface.co/datasets/mwong/fever-evidence-related/tree/14aba009b5fcd97b1a9ee6f3e3b0da0e308cf7cb)
* Size: 54,578 evaluation samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | label |
|:--------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------|:------------------------------------------------|
| type | string | string | int |
| details | <ul><li>min: 7 tokens</li><li>mean: 13.66 tokens</li><li>max: 26 tokens</li></ul> | <ul><li>min: 33 tokens</li><li>mean: 282.39 tokens</li><li>max: 1713 tokens</li></ul> | <ul><li>0: ~28.10%</li><li>1: ~71.90%</li></ul> |
* Samples:
| sentence1 | sentence2 | label |
|:--------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------|
| <code>Colin Kaepernick became a starting quarterback during the 49ers 63rd season in the National Football League.</code> | <code>RapidAdvance is a technology-powered financial services company that provides working capital to small and mid-sized businesses in the United States .. United States. United States. financial services. financial services. working capital. working capital. small and mid-sized businesses. Small and medium-sized enterprises. It offers small business loan programs for business owners in a variety of industries , including traditional retail establishments , brand name chain restaurants , automotive repair , manufacturing , trucking , and professional service providers .. Founded in 2005 and headquartered in Bethesda , Maryland , the company was acquired by Dan Gilbert 's Rockbridge Growth Equity , LLC in 2013 .. It is part of Rock Ventures `` family '' of companies that include the Cleveland Cavaliers , Fathead , Quicken Loans and Genius .. Rock Ventures. Rock Ventures. Cleveland Cavaliers. Cleveland Cavaliers. Fathead. Fathead ( brand ). Quicken Loans. Quicken Loans. Genius. Genius</code> | <code>1</code> |
| <code>Colin Kaepernick became a starting quarterback during the 49ers 63rd season in the National Football League.</code> | <code>Arthur Herbert Copeland -LRB- June 22 , 1898 Rochester , New York -- July 6 , 1970 -RRB- was an American mathematician .. American. United States. He graduated from Harvard University in 1926 and taught at Rice University and the University of Michigan .. Rice University. Rice University. University of Michigan. University of Michigan. Harvard University. Harvard University. His main interest was in the foundations of probability .. probability. probability theory. He worked with Paul Erdos on the Copeland-Erdos constant .. Copeland-Erdos constant. Copeland-Erdos constant. Paul Erdos. Paul Erdos. His son , Arthur Herbert Copeland , Jr. , is also a mathematician .</code> | <code>1</code> |
| <code>Tilda Swinton is a vegan.</code> | <code>Michael Ronald Taylor -LRB- 1 June 1938 , Ealing , West London - 19 January 1969 -RRB- was a British jazz composer , pianist and co-songwriter for the band Cream .. Ealing. Ealing. London. London. British. United Kingdom. Cream. Cream ( band ). Mike Taylor was brought up by his grandparents in London and Kent , and joined the RAF for his national service .. London. London. Having rehearsed and written extensively throughout the early 1960s , he recorded two albums for the Lansdowne series produced by Denis Preston : Pendulum -LRB- 1966 -RRB- with drummer Jon Hiseman , bassist Tony Reeves and saxophonist Dave Tomlin -RRB- and Trio -LRB- 1967 -RRB- with Hiseman and bassists Jack Bruce and Ron Rubin .. Denis Preston. Denis Preston. Jon Hiseman. Jon Hiseman. Dave Tomlin. Dave Tomlin ( musician ). Jack Bruce. Jack Bruce. They were issued on UK Columbia .. Columbia. Columbia Graphophone Company. During his brief recording career , several of Taylor 's pieces were played and recorded by his ...</code> | <code>1</code> |
* Loss: [<code>SoftmaxLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss)
#### glue/stsb_0
* Dataset: [glue/stsb_0](https://huggingface.co/datasets/glue) at [bcdcba7](https://huggingface.co/datasets/glue/tree/bcdcba79d07bc864c1c254ccfcedcce55bcc9a8c)
* Size: 1,500 evaluation samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | label |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details | <ul><li>min: 5 tokens</li><li>mean: 16.46 tokens</li><li>max: 44 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 16.47 tokens</li><li>max: 44 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 2.35</li><li>max: 5.0</li></ul> |
* Samples:
| sentence1 | sentence2 | label |
|:-------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------|
| <code>The room used for defecation is almost always referred to by euphemism.</code> | <code>I'm English, and would probably use 'toilet' most of the time, and always in the context of a private home.</code> | <code>1.600000023841858</code> |
| <code>The two-year note US2YT=RR fell 5/32 in price, taking its yield to 1.23 percent from 1.16 percent late on Monday.</code> | <code>The benchmark 10-year note US10YT=RR lost 11/32 in price, taking its yield to 3.21 percent from 3.17 percent late on Monday.</code> | <code>2.0</code> |
| <code>I use Elinchrom Skyports, but if money is not an issue then go for PocketWizards.</code> | <code>Or just go with the ultra-cheap YongNuo RF-602, which give you a lot of bang for the buck.</code> | <code>1.2000000476837158</code> |
* Loss: [<code>AnglELoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#angleloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "pairwise_angle_sim"
}
```
#### glue/stsb_1
* Dataset: [glue/stsb_1](https://huggingface.co/datasets/glue) at [bcdcba7](https://huggingface.co/datasets/glue/tree/bcdcba79d07bc864c1c254ccfcedcce55bcc9a8c)
* Size: 1,500 evaluation samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | label |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details | <ul><li>min: 5 tokens</li><li>mean: 16.46 tokens</li><li>max: 44 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 16.47 tokens</li><li>max: 44 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 2.35</li><li>max: 5.0</li></ul> |
* Samples:
| sentence1 | sentence2 | label |
|:-------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------|
| <code>The room used for defecation is almost always referred to by euphemism.</code> | <code>I'm English, and would probably use 'toilet' most of the time, and always in the context of a private home.</code> | <code>1.600000023841858</code> |
| <code>The two-year note US2YT=RR fell 5/32 in price, taking its yield to 1.23 percent from 1.16 percent late on Monday.</code> | <code>The benchmark 10-year note US10YT=RR lost 11/32 in price, taking its yield to 3.21 percent from 3.17 percent late on Monday.</code> | <code>2.0</code> |
| <code>I use Elinchrom Skyports, but if money is not an issue then go for PocketWizards.</code> | <code>Or just go with the ultra-cheap YongNuo RF-602, which give you a lot of bang for the buck.</code> | <code>1.2000000476837158</code> |
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
```
#### glue/stsb_2
* Dataset: [glue/stsb_2](https://huggingface.co/datasets/glue) at [bcdcba7](https://huggingface.co/datasets/glue/tree/bcdcba79d07bc864c1c254ccfcedcce55bcc9a8c)
* Size: 1,500 evaluation samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | label |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details | <ul><li>min: 5 tokens</li><li>mean: 16.46 tokens</li><li>max: 44 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 16.47 tokens</li><li>max: 44 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 2.35</li><li>max: 5.0</li></ul> |
* Samples:
| sentence1 | sentence2 | label |
|:-------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------|
| <code>The room used for defecation is almost always referred to by euphemism.</code> | <code>I'm English, and would probably use 'toilet' most of the time, and always in the context of a private home.</code> | <code>1.600000023841858</code> |
| <code>The two-year note US2YT=RR fell 5/32 in price, taking its yield to 1.23 percent from 1.16 percent late on Monday.</code> | <code>The benchmark 10-year note US10YT=RR lost 11/32 in price, taking its yield to 3.21 percent from 3.17 percent late on Monday.</code> | <code>2.0</code> |
| <code>I use Elinchrom Skyports, but if money is not an issue then go for PocketWizards.</code> | <code>Or just go with the ultra-cheap YongNuo RF-602, which give you a lot of bang for the buck.</code> | <code>1.2000000476837158</code> |
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
```json
{
"loss_fct": "torch.nn.modules.loss.MSELoss"
}
```
#### sick/relatedness_0
* Dataset: sick/relatedness_0
* Size: 495 evaluation samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
* Approximate statistics based on the first 495 samples:
| | sentence1 | sentence2 | label |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details | <ul><li>min: 6 tokens</li><li>mean: 12.69 tokens</li><li>max: 32 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 12.15 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 1.0</li><li>mean: 3.59</li><li>max: 5.0</li></ul> |
* Samples:
| sentence1 | sentence2 | label |
|:-------------------------------------------------------------------------------|:--------------------------------------------------------------------------|:--------------------------------|
| <code>The young boys are playing outdoors and the man is smiling nearby</code> | <code>There is no boy playing outdoors and there is no man smiling</code> | <code>3.5999999046325684</code> |
| <code>A person in a black jacket is doing tricks on a motorbike</code> | <code>A skilled person is riding a bicycle on one wheel</code> | <code>3.4000000953674316</code> |
| <code>Four children are doing backbends in the gym</code> | <code>Four girls are doing backbends and playing outdoors</code> | <code>3.799999952316284</code> |
* Loss: [<code>AnglELoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#angleloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "pairwise_angle_sim"
}
```
#### sick/relatedness_1
* Dataset: sick/relatedness_1
* Size: 495 evaluation samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
* Approximate statistics based on the first 495 samples:
| | sentence1 | sentence2 | label |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details | <ul><li>min: 6 tokens</li><li>mean: 12.69 tokens</li><li>max: 32 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 12.15 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 1.0</li><li>mean: 3.59</li><li>max: 5.0</li></ul> |
* Samples:
| sentence1 | sentence2 | label |
|:-------------------------------------------------------------------------------|:--------------------------------------------------------------------------|:--------------------------------|
| <code>The young boys are playing outdoors and the man is smiling nearby</code> | <code>There is no boy playing outdoors and there is no man smiling</code> | <code>3.5999999046325684</code> |
| <code>A person in a black jacket is doing tricks on a motorbike</code> | <code>A skilled person is riding a bicycle on one wheel</code> | <code>3.4000000953674316</code> |
| <code>Four children are doing backbends in the gym</code> | <code>Four girls are doing backbends and playing outdoors</code> | <code>3.799999952316284</code> |
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
```
#### sick/relatedness_2
* Dataset: sick/relatedness_2
* Size: 495 evaluation samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
* Approximate statistics based on the first 495 samples:
| | sentence1 | sentence2 | label |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details | <ul><li>min: 6 tokens</li><li>mean: 12.69 tokens</li><li>max: 32 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 12.15 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 1.0</li><li>mean: 3.59</li><li>max: 5.0</li></ul> |
* Samples:
| sentence1 | sentence2 | label |
|:-------------------------------------------------------------------------------|:--------------------------------------------------------------------------|:--------------------------------|
| <code>The young boys are playing outdoors and the man is smiling nearby</code> | <code>There is no boy playing outdoors and there is no man smiling</code> | <code>3.5999999046325684</code> |
| <code>A person in a black jacket is doing tricks on a motorbike</code> | <code>A skilled person is riding a bicycle on one wheel</code> | <code>3.4000000953674316</code> |
| <code>Four children are doing backbends in the gym</code> | <code>Four girls are doing backbends and playing outdoors</code> | <code>3.799999952316284</code> |
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
```json
{
"loss_fct": "torch.nn.modules.loss.MSELoss"
}
```
#### sts-companion_0
* Dataset: [sts-companion_0](https://huggingface.co/datasets/tasksource/sts-companion) at [fd8beff](https://huggingface.co/datasets/tasksource/sts-companion/tree/fd8beffb788df5f6673bc688e6dcbe3690a3acc6)
* Size: 5,289 evaluation samples
* Columns: <code>label</code>, <code>sentence1</code>, and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | label | sentence1 | sentence2 |
|:--------|:---------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | float | string | string |
| details | <ul><li>min: 0.0</li><li>mean: 3.24</li><li>max: 5.0</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 19.56 tokens</li><li>max: 81 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 17.21 tokens</li><li>max: 72 tokens</li></ul> |
* Samples:
| label | sentence1 | sentence2 |
|:-----------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>3.8</code> | <code>After all, it is by no means certain that the proposed definition of equitable price is better than any other, because the various definitions that are currently in use in the Member States are all perfectly satisfactory.</code> | <code>In fact, it is not absolutely certain that the definition of price that is proposed is better than another, because the different currently in the Member States all fully. </code> |
| <code>2.0</code> | <code>rslw: no, why would i hate them?</code> | <code>why do you hate america so much?</code> |
| <code>3.0</code> | <code>Families of #Newtown Victims Look for Answers on #Gun Violence #NRA</code> | <code>Families of Newtown School Massacre Victims Organize Against Gun Violence</code> |
* Loss: [<code>AnglELoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#angleloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "pairwise_angle_sim"
}
```
#### sts-companion_1
* Dataset: [sts-companion_1](https://huggingface.co/datasets/tasksource/sts-companion) at [fd8beff](https://huggingface.co/datasets/tasksource/sts-companion/tree/fd8beffb788df5f6673bc688e6dcbe3690a3acc6)
* Size: 5,289 evaluation samples
* Columns: <code>label</code>, <code>sentence1</code>, and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | label | sentence1 | sentence2 |
|:--------|:---------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | float | string | string |
| details | <ul><li>min: 0.0</li><li>mean: 3.24</li><li>max: 5.0</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 19.56 tokens</li><li>max: 81 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 17.21 tokens</li><li>max: 72 tokens</li></ul> |
* Samples:
| label | sentence1 | sentence2 |
|:-----------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>3.8</code> | <code>After all, it is by no means certain that the proposed definition of equitable price is better than any other, because the various definitions that are currently in use in the Member States are all perfectly satisfactory.</code> | <code>In fact, it is not absolutely certain that the definition of price that is proposed is better than another, because the different currently in the Member States all fully. </code> |
| <code>2.0</code> | <code>rslw: no, why would i hate them?</code> | <code>why do you hate america so much?</code> |
| <code>3.0</code> | <code>Families of #Newtown Victims Look for Answers on #Gun Violence #NRA</code> | <code>Families of Newtown School Massacre Victims Organize Against Gun Violence</code> |
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
```
#### sts-companion_2
* Dataset: [sts-companion_2](https://huggingface.co/datasets/tasksource/sts-companion) at [fd8beff](https://huggingface.co/datasets/tasksource/sts-companion/tree/fd8beffb788df5f6673bc688e6dcbe3690a3acc6)
* Size: 5,289 evaluation samples
* Columns: <code>label</code>, <code>sentence1</code>, and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | label | sentence1 | sentence2 |
|:--------|:---------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | float | string | string |
| details | <ul><li>min: 0.0</li><li>mean: 3.24</li><li>max: 5.0</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 19.56 tokens</li><li>max: 81 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 17.21 tokens</li><li>max: 72 tokens</li></ul> |
* Samples:
| label | sentence1 | sentence2 |
|:-----------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>3.8</code> | <code>After all, it is by no means certain that the proposed definition of equitable price is better than any other, because the various definitions that are currently in use in the Member States are all perfectly satisfactory.</code> | <code>In fact, it is not absolutely certain that the definition of price that is proposed is better than another, because the different currently in the Member States all fully. </code> |
| <code>2.0</code> | <code>rslw: no, why would i hate them?</code> | <code>why do you hate america so much?</code> |
| <code>3.0</code> | <code>Families of #Newtown Victims Look for Answers on #Gun Violence #NRA</code> | <code>Families of Newtown School Massacre Victims Organize Against Gun Violence</code> |
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
```json
{
"loss_fct": "torch.nn.modules.loss.MSELoss"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `per_device_train_batch_size`: 24
- `learning_rate`: 3.5e-05
- `weight_decay`: 1e-06
- `num_train_epochs`: 2
- `warmup_ratio`: 0.1
- `fp16`: True
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: no
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 24
- `per_device_eval_batch_size`: 8
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 3.5e-05
- `weight_decay`: 1e-06
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 2
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
<details><summary>Click to expand</summary>
| Epoch | Step | Training Loss |
|:------:|:------:|:-------------:|
| 0.0025 | 500 | 6.0463 |
| 0.0050 | 1000 | 2.5823 |
| 0.0074 | 1500 | 1.1895 |
| 0.0099 | 2000 | 0.9445 |
| 0.0124 | 2500 | 0.8209 |
| 0.0149 | 3000 | 0.7738 |
| 0.0174 | 3500 | 0.7587 |
| 0.0198 | 4000 | 0.7189 |
| 0.0223 | 4500 | 0.7077 |
| 0.0248 | 5000 | 0.6986 |
| 0.0273 | 5500 | 0.6977 |
| 0.0297 | 6000 | 0.6969 |
| 0.0322 | 6500 | 0.6646 |
| 0.0347 | 7000 | 0.6125 |
| 0.0372 | 7500 | 0.6107 |
| 0.0397 | 8000 | 0.6454 |
| 0.0421 | 8500 | 0.6437 |
| 0.0446 | 9000 | 0.6001 |
| 0.0471 | 9500 | 0.613 |
| 0.0496 | 10000 | 0.5964 |
| 0.0521 | 10500 | 0.6019 |
| 0.0545 | 11000 | 0.5807 |
| 0.0570 | 11500 | 0.5661 |
| 0.0595 | 12000 | 0.5615 |
| 0.0620 | 12500 | 0.5679 |
| 0.0645 | 13000 | 0.5783 |
| 0.0669 | 13500 | 0.5627 |
| 0.0694 | 14000 | 0.5501 |
| 0.0719 | 14500 | 0.538 |
| 0.0744 | 15000 | 0.5828 |
| 0.0769 | 15500 | 0.5524 |
| 0.0793 | 16000 | 0.5327 |
| 0.0818 | 16500 | 0.5356 |
| 0.0843 | 17000 | 0.4979 |
| 0.0868 | 17500 | 0.5223 |
| 0.0892 | 18000 | 0.4955 |
| 0.0917 | 18500 | 0.5079 |
| 0.0942 | 19000 | 0.506 |
| 0.0967 | 19500 | 0.4926 |
| 0.0992 | 20000 | 0.4845 |
| 0.1016 | 20500 | 0.5078 |
| 0.1041 | 21000 | 0.4937 |
| 0.1066 | 21500 | 0.4937 |
| 0.1091 | 22000 | 0.4971 |
| 0.1116 | 22500 | 0.4699 |
| 0.1140 | 23000 | 0.5022 |
| 0.1165 | 23500 | 0.5162 |
| 0.1190 | 24000 | 0.5221 |
| 0.1215 | 24500 | 0.5147 |
| 0.1240 | 25000 | 0.4719 |
| 0.1264 | 25500 | 0.489 |
| 0.1289 | 26000 | 0.5117 |
| 0.1314 | 26500 | 0.4643 |
| 0.1339 | 27000 | 0.469 |
| 0.1364 | 27500 | 0.5095 |
| 0.1388 | 28000 | 0.441 |
| 0.1413 | 28500 | 0.4765 |
| 0.1438 | 29000 | 0.4943 |
| 0.1463 | 29500 | 0.4797 |
| 0.1487 | 30000 | 0.4709 |
| 0.1512 | 30500 | 0.4429 |
| 0.1537 | 31000 | 0.429 |
| 0.1562 | 31500 | 0.4445 |
| 0.1587 | 32000 | 0.4982 |
| 0.1611 | 32500 | 0.4501 |
| 0.1636 | 33000 | 0.4812 |
| 0.1661 | 33500 | 0.4483 |
| 0.1686 | 34000 | 0.4613 |
| 0.1711 | 34500 | 0.4646 |
| 0.1735 | 35000 | 0.4737 |
| 0.1760 | 35500 | 0.4648 |
| 0.1785 | 36000 | 0.4004 |
| 0.1810 | 36500 | 0.4346 |
| 0.1835 | 37000 | 0.4536 |
| 0.1859 | 37500 | 0.4469 |
| 0.1884 | 38000 | 0.4381 |
| 0.1909 | 38500 | 0.4451 |
| 0.1934 | 39000 | 0.4202 |
| 0.1958 | 39500 | 0.4437 |
| 0.1983 | 40000 | 0.4188 |
| 0.2008 | 40500 | 0.4016 |
| 0.2033 | 41000 | 0.4258 |
| 0.2058 | 41500 | 0.4072 |
| 0.2082 | 42000 | 0.4248 |
| 0.2107 | 42500 | 0.4414 |
| 0.2132 | 43000 | 0.4317 |
| 0.2157 | 43500 | 0.445 |
| 0.2182 | 44000 | 0.4106 |
| 0.2206 | 44500 | 0.4343 |
| 0.2231 | 45000 | 0.4025 |
| 0.2256 | 45500 | 0.4235 |
| 0.2281 | 46000 | 0.4583 |
| 0.2306 | 46500 | 0.4001 |
| 0.2330 | 47000 | 0.4188 |
| 0.2355 | 47500 | 0.4073 |
| 0.2380 | 48000 | 0.4407 |
| 0.2405 | 48500 | 0.4214 |
| 0.2430 | 49000 | 0.4181 |
| 0.2454 | 49500 | 0.4153 |
| 0.2479 | 50000 | 0.4171 |
| 0.2504 | 50500 | 0.4174 |
| 0.2529 | 51000 | 0.3984 |
| 0.2553 | 51500 | 0.4045 |
| 0.2578 | 52000 | 0.403 |
| 0.2603 | 52500 | 0.4109 |
| 0.2628 | 53000 | 0.4445 |
| 0.2653 | 53500 | 0.4114 |
| 0.2677 | 54000 | 0.3777 |
| 0.2702 | 54500 | 0.3682 |
| 0.2727 | 55000 | 0.3973 |
| 0.2752 | 55500 | 0.3998 |
| 0.2777 | 56000 | 0.3988 |
| 0.2801 | 56500 | 0.3965 |
| 0.2826 | 57000 | 0.434 |
| 0.2851 | 57500 | 0.3958 |
| 0.2876 | 58000 | 0.417 |
| 0.2901 | 58500 | 0.3767 |
| 0.2925 | 59000 | 0.3901 |
| 0.2950 | 59500 | 0.398 |
| 0.2975 | 60000 | 0.3788 |
| 0.3000 | 60500 | 0.4102 |
| 0.3025 | 61000 | 0.3718 |
| 0.3049 | 61500 | 0.394 |
| 0.3074 | 62000 | 0.3836 |
| 0.3099 | 62500 | 0.4169 |
| 0.3124 | 63000 | 0.4074 |
| 0.3148 | 63500 | 0.4379 |
| 0.3173 | 64000 | 0.3747 |
| 0.3198 | 64500 | 0.4141 |
| 0.3223 | 65000 | 0.3865 |
| 0.3248 | 65500 | 0.395 |
| 0.3272 | 66000 | 0.3571 |
| 0.3297 | 66500 | 0.3847 |
| 0.3322 | 67000 | 0.3778 |
| 0.3347 | 67500 | 0.4095 |
| 0.3372 | 68000 | 0.4036 |
| 0.3396 | 68500 | 0.3824 |
| 0.3421 | 69000 | 0.3811 |
| 0.3446 | 69500 | 0.368 |
| 0.3471 | 70000 | 0.4028 |
| 0.3496 | 70500 | 0.3978 |
| 0.3520 | 71000 | 0.3765 |
| 0.3545 | 71500 | 0.3735 |
| 0.3570 | 72000 | 0.3625 |
| 0.3595 | 72500 | 0.3696 |
| 0.3619 | 73000 | 0.3999 |
| 0.3644 | 73500 | 0.353 |
| 0.3669 | 74000 | 0.3902 |
| 0.3694 | 74500 | 0.3925 |
| 0.3719 | 75000 | 0.3382 |
| 0.3743 | 75500 | 0.3531 |
| 0.3768 | 76000 | 0.3618 |
| 0.3793 | 76500 | 0.3372 |
| 0.3818 | 77000 | 0.382 |
| 0.3843 | 77500 | 0.3866 |
| 0.3867 | 78000 | 0.3513 |
| 0.3892 | 78500 | 0.3727 |
| 0.3917 | 79000 | 0.3603 |
| 0.3942 | 79500 | 0.397 |
| 0.3967 | 80000 | 0.351 |
| 0.3991 | 80500 | 0.3675 |
| 0.4016 | 81000 | 0.3861 |
| 0.4041 | 81500 | 0.3423 |
| 0.4066 | 82000 | 0.3618 |
| 0.4091 | 82500 | 0.3784 |
| 0.4115 | 83000 | 0.3688 |
| 0.4140 | 83500 | 0.3343 |
| 0.4165 | 84000 | 0.3831 |
| 0.4190 | 84500 | 0.4134 |
| 0.4214 | 85000 | 0.3548 |
| 0.4239 | 85500 | 0.3422 |
| 0.4264 | 86000 | 0.3471 |
| 0.4289 | 86500 | 0.3506 |
| 0.4314 | 87000 | 0.3338 |
| 0.4338 | 87500 | 0.3283 |
| 0.4363 | 88000 | 0.3696 |
| 0.4388 | 88500 | 0.3476 |
| 0.4413 | 89000 | 0.3662 |
| 0.4438 | 89500 | 0.3607 |
| 0.4462 | 90000 | 0.3553 |
| 0.4487 | 90500 | 0.3637 |
| 0.4512 | 91000 | 0.388 |
| 0.4537 | 91500 | 0.348 |
| 0.4562 | 92000 | 0.3678 |
| 0.4586 | 92500 | 0.3961 |
| 0.4611 | 93000 | 0.3309 |
| 0.4636 | 93500 | 0.3639 |
| 0.4661 | 94000 | 0.3393 |
| 0.4686 | 94500 | 0.3861 |
| 0.4710 | 95000 | 0.3484 |
| 0.4735 | 95500 | 0.3511 |
| 0.4760 | 96000 | 0.3445 |
| 0.4785 | 96500 | 0.3486 |
| 0.4809 | 97000 | 0.3262 |
| 0.4834 | 97500 | 0.3342 |
| 0.4859 | 98000 | 0.3845 |
| 0.4884 | 98500 | 0.3481 |
| 0.4909 | 99000 | 0.3275 |
| 0.4933 | 99500 | 0.3567 |
| 0.4958 | 100000 | 0.3656 |
| 0.4983 | 100500 | 0.3299 |
| 0.5008 | 101000 | 0.3396 |
| 0.5033 | 101500 | 0.3497 |
| 0.5057 | 102000 | 0.3484 |
| 0.5082 | 102500 | 0.3684 |
| 0.5107 | 103000 | 0.318 |
| 0.5132 | 103500 | 0.2966 |
| 0.5157 | 104000 | 0.3452 |
| 0.5181 | 104500 | 0.3365 |
| 0.5206 | 105000 | 0.3352 |
| 0.5231 | 105500 | 0.3854 |
| 0.5256 | 106000 | 0.3712 |
| 0.5280 | 106500 | 0.334 |
| 0.5305 | 107000 | 0.3381 |
| 0.5330 | 107500 | 0.3289 |
| 0.5355 | 108000 | 0.3332 |
| 0.5380 | 108500 | 0.3441 |
| 0.5404 | 109000 | 0.3701 |
| 0.5429 | 109500 | 0.3268 |
| 0.5454 | 110000 | 0.3072 |
| 0.5479 | 110500 | 0.3348 |
| 0.5504 | 111000 | 0.3501 |
| 0.5528 | 111500 | 0.3179 |
| 0.5553 | 112000 | 0.3276 |
| 0.5578 | 112500 | 0.3958 |
| 0.5603 | 113000 | 0.3317 |
| 0.5628 | 113500 | 0.3564 |
| 0.5652 | 114000 | 0.3042 |
| 0.5677 | 114500 | 0.3482 |
| 0.5702 | 115000 | 0.3383 |
| 0.5727 | 115500 | 0.3557 |
| 0.5752 | 116000 | 0.3195 |
| 0.5776 | 116500 | 0.3265 |
| 0.5801 | 117000 | 0.3174 |
| 0.5826 | 117500 | 0.3392 |
| 0.5851 | 118000 | 0.3279 |
| 0.5875 | 118500 | 0.3254 |
| 0.5900 | 119000 | 0.3501 |
| 0.5925 | 119500 | 0.336 |
| 0.5950 | 120000 | 0.3899 |
| 0.5975 | 120500 | 0.3614 |
| 0.5999 | 121000 | 0.3473 |
| 0.6024 | 121500 | 0.3275 |
| 0.6049 | 122000 | 0.3213 |
| 0.6074 | 122500 | 0.303 |
| 0.6099 | 123000 | 0.3258 |
| 0.6123 | 123500 | 0.3175 |
| 0.6148 | 124000 | 0.3418 |
| 0.6173 | 124500 | 0.3422 |
| 0.6198 | 125000 | 0.3212 |
| 0.6223 | 125500 | 0.3171 |
| 0.6247 | 126000 | 0.3428 |
| 0.6272 | 126500 | 0.3327 |
| 0.6297 | 127000 | 0.3126 |
| 0.6322 | 127500 | 0.3194 |
| 0.6346 | 128000 | 0.3341 |
| 0.6371 | 128500 | 0.3246 |
| 0.6396 | 129000 | 0.3154 |
| 0.6421 | 129500 | 0.3224 |
| 0.6446 | 130000 | 0.3422 |
| 0.6470 | 130500 | 0.2983 |
| 0.6495 | 131000 | 0.3257 |
| 0.6520 | 131500 | 0.301 |
| 0.6545 | 132000 | 0.3276 |
| 0.6570 | 132500 | 0.34 |
| 0.6594 | 133000 | 0.3348 |
| 0.6619 | 133500 | 0.3298 |
| 0.6644 | 134000 | 0.323 |
| 0.6669 | 134500 | 0.3099 |
| 0.6694 | 135000 | 0.3454 |
| 0.6718 | 135500 | 0.3088 |
| 0.6743 | 136000 | 0.3501 |
| 0.6768 | 136500 | 0.3238 |
| 0.6793 | 137000 | 0.3017 |
| 0.6818 | 137500 | 0.3071 |
| 0.6842 | 138000 | 0.3165 |
| 0.6867 | 138500 | 0.2963 |
| 0.6892 | 139000 | 0.3186 |
| 0.6917 | 139500 | 0.3292 |
| 0.6941 | 140000 | 0.3108 |
| 0.6966 | 140500 | 0.3156 |
| 0.6991 | 141000 | 0.3188 |
| 0.7016 | 141500 | 0.2935 |
| 0.7041 | 142000 | 0.319 |
| 0.7065 | 142500 | 0.3123 |
| 0.7090 | 143000 | 0.302 |
| 0.7115 | 143500 | 0.3254 |
| 0.7140 | 144000 | 0.3018 |
| 0.7165 | 144500 | 0.3272 |
| 0.7189 | 145000 | 0.3258 |
| 0.7214 | 145500 | 0.3557 |
| 0.7239 | 146000 | 0.2816 |
| 0.7264 | 146500 | 0.3372 |
| 0.7289 | 147000 | 0.3406 |
| 0.7313 | 147500 | 0.3564 |
| 0.7338 | 148000 | 0.3341 |
| 0.7363 | 148500 | 0.3068 |
| 0.7388 | 149000 | 0.3565 |
| 0.7413 | 149500 | 0.3161 |
| 0.7437 | 150000 | 0.3187 |
| 0.7462 | 150500 | 0.3356 |
| 0.7487 | 151000 | 0.3103 |
| 0.7512 | 151500 | 0.3316 |
| 0.7536 | 152000 | 0.2906 |
| 0.7561 | 152500 | 0.3262 |
| 0.7586 | 153000 | 0.3039 |
| 0.7611 | 153500 | 0.301 |
| 0.7636 | 154000 | 0.3108 |
| 0.7660 | 154500 | 0.2937 |
| 0.7685 | 155000 | 0.2802 |
| 0.7710 | 155500 | 0.2926 |
| 0.7735 | 156000 | 0.3112 |
| 0.7760 | 156500 | 0.309 |
| 0.7784 | 157000 | 0.3059 |
| 0.7809 | 157500 | 0.313 |
| 0.7834 | 158000 | 0.3024 |
| 0.7859 | 158500 | 0.3122 |
| 0.7884 | 159000 | 0.2937 |
| 0.7908 | 159500 | 0.3102 |
| 0.7933 | 160000 | 0.3206 |
| 0.7958 | 160500 | 0.2895 |
| 0.7983 | 161000 | 0.3207 |
| 0.8007 | 161500 | 0.3099 |
| 0.8032 | 162000 | 0.2979 |
| 0.8057 | 162500 | 0.3607 |
| 0.8082 | 163000 | 0.3325 |
| 0.8107 | 163500 | 0.3117 |
| 0.8131 | 164000 | 0.3027 |
| 0.8156 | 164500 | 0.3347 |
| 0.8181 | 165000 | 0.3034 |
| 0.8206 | 165500 | 0.2918 |
| 0.8231 | 166000 | 0.315 |
| 0.8255 | 166500 | 0.2943 |
| 0.8280 | 167000 | 0.3407 |
| 0.8305 | 167500 | 0.312 |
| 0.8330 | 168000 | 0.2758 |
| 0.8355 | 168500 | 0.3487 |
| 0.8379 | 169000 | 0.3216 |
| 0.8404 | 169500 | 0.3087 |
| 0.8429 | 170000 | 0.2963 |
| 0.8454 | 170500 | 0.2879 |
| 0.8479 | 171000 | 0.3588 |
| 0.8503 | 171500 | 0.3507 |
| 0.8528 | 172000 | 0.3208 |
| 0.8553 | 172500 | 0.3181 |
| 0.8578 | 173000 | 0.2946 |
| 0.8602 | 173500 | 0.2846 |
| 0.8627 | 174000 | 0.3069 |
| 0.8652 | 174500 | 0.3134 |
| 0.8677 | 175000 | 0.3164 |
| 0.8702 | 175500 | 0.3191 |
| 0.8726 | 176000 | 0.2892 |
| 0.8751 | 176500 | 0.3081 |
| 0.8776 | 177000 | 0.2622 |
| 0.8801 | 177500 | 0.298 |
| 0.8826 | 178000 | 0.337 |
| 0.8850 | 178500 | 0.2701 |
| 0.8875 | 179000 | 0.2966 |
| 0.8900 | 179500 | 0.2894 |
| 0.8925 | 180000 | 0.3133 |
| 0.8950 | 180500 | 0.3172 |
| 0.8974 | 181000 | 0.2937 |
| 0.8999 | 181500 | 0.2804 |
| 0.9024 | 182000 | 0.3296 |
| 0.9049 | 182500 | 0.2831 |
| 0.9074 | 183000 | 0.2719 |
| 0.9098 | 183500 | 0.3014 |
| 0.9123 | 184000 | 0.2939 |
| 0.9148 | 184500 | 0.2835 |
| 0.9173 | 185000 | 0.3625 |
| 0.9197 | 185500 | 0.3056 |
| 0.9222 | 186000 | 0.3241 |
| 0.9247 | 186500 | 0.2916 |
| 0.9272 | 187000 | 0.2913 |
| 0.9297 | 187500 | 0.2813 |
| 0.9321 | 188000 | 0.2967 |
| 0.9346 | 188500 | 0.3152 |
| 0.9371 | 189000 | 0.2752 |
| 0.9396 | 189500 | 0.2855 |
| 0.9421 | 190000 | 0.3114 |
| 0.9445 | 190500 | 0.3117 |
| 0.9470 | 191000 | 0.305 |
| 0.9495 | 191500 | 0.316 |
| 0.9520 | 192000 | 0.2817 |
| 0.9545 | 192500 | 0.2777 |
| 0.9569 | 193000 | 0.2823 |
| 0.9594 | 193500 | 0.3473 |
| 0.9619 | 194000 | 0.3045 |
| 0.9644 | 194500 | 0.2951 |
| 0.9668 | 195000 | 0.3043 |
| 0.9693 | 195500 | 0.2739 |
| 0.9718 | 196000 | 0.2671 |
| 0.9743 | 196500 | 0.2876 |
| 0.9768 | 197000 | 0.267 |
| 0.9792 | 197500 | 0.3052 |
| 0.9817 | 198000 | 0.2789 |
| 0.9842 | 198500 | 0.2794 |
| 0.9867 | 199000 | 0.2907 |
| 0.9892 | 199500 | 0.2758 |
| 0.9916 | 200000 | 0.3191 |
| 0.9941 | 200500 | 0.2741 |
| 0.9966 | 201000 | 0.269 |
| 0.9991 | 201500 | 0.2939 |
| 1.0016 | 202000 | 0.2716 |
| 1.0040 | 202500 | 0.3019 |
| 1.0065 | 203000 | 0.3044 |
| 1.0090 | 203500 | 0.2788 |
| 1.0115 | 204000 | 0.2759 |
| 1.0140 | 204500 | 0.2746 |
| 1.0164 | 205000 | 0.2908 |
| 1.0189 | 205500 | 0.27 |
| 1.0214 | 206000 | 0.2686 |
| 1.0239 | 206500 | 0.2816 |
| 1.0263 | 207000 | 0.2916 |
| 1.0288 | 207500 | 0.2948 |
| 1.0313 | 208000 | 0.2814 |
| 1.0338 | 208500 | 0.2454 |
| 1.0363 | 209000 | 0.2638 |
| 1.0387 | 209500 | 0.2887 |
| 1.0412 | 210000 | 0.3043 |
| 1.0437 | 210500 | 0.2737 |
| 1.0462 | 211000 | 0.2693 |
| 1.0487 | 211500 | 0.2825 |
| 1.0511 | 212000 | 0.284 |
| 1.0536 | 212500 | 0.2693 |
| 1.0561 | 213000 | 0.2721 |
| 1.0586 | 213500 | 0.2677 |
| 1.0611 | 214000 | 0.267 |
| 1.0635 | 214500 | 0.2752 |
| 1.0660 | 215000 | 0.3046 |
| 1.0685 | 215500 | 0.2788 |
| 1.0710 | 216000 | 0.2612 |
| 1.0735 | 216500 | 0.2984 |
| 1.0759 | 217000 | 0.2838 |
| 1.0784 | 217500 | 0.2752 |
| 1.0809 | 218000 | 0.2592 |
| 1.0834 | 218500 | 0.2728 |
| 1.0858 | 219000 | 0.2643 |
| 1.0883 | 219500 | 0.2636 |
| 1.0908 | 220000 | 0.2581 |
| 1.0933 | 220500 | 0.2652 |
| 1.0958 | 221000 | 0.2637 |
| 1.0982 | 221500 | 0.2734 |
| 1.1007 | 222000 | 0.2703 |
| 1.1032 | 222500 | 0.2537 |
| 1.1057 | 223000 | 0.2765 |
| 1.1082 | 223500 | 0.2744 |
| 1.1106 | 224000 | 0.2525 |
| 1.1131 | 224500 | 0.2798 |
| 1.1156 | 225000 | 0.2749 |
| 1.1181 | 225500 | 0.2886 |
| 1.1206 | 226000 | 0.2889 |
| 1.1230 | 226500 | 0.2756 |
| 1.1255 | 227000 | 0.2694 |
| 1.1280 | 227500 | 0.2712 |
| 1.1305 | 228000 | 0.2701 |
| 1.1329 | 228500 | 0.2433 |
| 1.1354 | 229000 | 0.3027 |
| 1.1379 | 229500 | 0.2572 |
| 1.1404 | 230000 | 0.2682 |
| 1.1429 | 230500 | 0.2794 |
| 1.1453 | 231000 | 0.2521 |
| 1.1478 | 231500 | 0.271 |
| 1.1503 | 232000 | 0.2418 |
| 1.1528 | 232500 | 0.2426 |
| 1.1553 | 233000 | 0.2404 |
| 1.1577 | 233500 | 0.2991 |
| 1.1602 | 234000 | 0.2571 |
| 1.1627 | 234500 | 0.2737 |
| 1.1652 | 235000 | 0.2513 |
| 1.1677 | 235500 | 0.2901 |
| 1.1701 | 236000 | 0.2489 |
| 1.1726 | 236500 | 0.2548 |
| 1.1751 | 237000 | 0.2895 |
| 1.1776 | 237500 | 0.2195 |
| 1.1801 | 238000 | 0.2362 |
| 1.1825 | 238500 | 0.2522 |
| 1.1850 | 239000 | 0.2532 |
| 1.1875 | 239500 | 0.2468 |
| 1.1900 | 240000 | 0.2506 |
| 1.1924 | 240500 | 0.2422 |
| 1.1949 | 241000 | 0.2325 |
| 1.1974 | 241500 | 0.2487 |
| 1.1999 | 242000 | 0.2315 |
| 1.2024 | 242500 | 0.2195 |
| 1.2048 | 243000 | 0.234 |
| 1.2073 | 243500 | 0.2313 |
| 1.2098 | 244000 | 0.253 |
| 1.2123 | 244500 | 0.2621 |
| 1.2148 | 245000 | 0.2433 |
| 1.2172 | 245500 | 0.2455 |
| 1.2197 | 246000 | 0.2485 |
| 1.2222 | 246500 | 0.2192 |
| 1.2247 | 247000 | 0.2423 |
| 1.2272 | 247500 | 0.2565 |
| 1.2296 | 248000 | 0.227 |
| 1.2321 | 248500 | 0.2255 |
| 1.2346 | 249000 | 0.2428 |
| 1.2371 | 249500 | 0.2506 |
| 1.2396 | 250000 | 0.2525 |
| 1.2420 | 250500 | 0.2195 |
| 1.2445 | 251000 | 0.2585 |
| 1.2470 | 251500 | 0.23 |
| 1.2495 | 252000 | 0.2146 |
| 1.2519 | 252500 | 0.2564 |
| 1.2544 | 253000 | 0.2335 |
| 1.2569 | 253500 | 0.2149 |
| 1.2594 | 254000 | 0.2751 |
| 1.2619 | 254500 | 0.2714 |
| 1.2643 | 255000 | 0.2386 |
| 1.2668 | 255500 | 0.2123 |
| 1.2693 | 256000 | 0.1983 |
| 1.2718 | 256500 | 0.2266 |
| 1.2743 | 257000 | 0.2416 |
| 1.2767 | 257500 | 0.2202 |
| 1.2792 | 258000 | 0.2175 |
| 1.2817 | 258500 | 0.2696 |
| 1.2842 | 259000 | 0.2454 |
| 1.2867 | 259500 | 0.2413 |
| 1.2891 | 260000 | 0.2117 |
| 1.2916 | 260500 | 0.2249 |
| 1.2941 | 261000 | 0.2516 |
| 1.2966 | 261500 | 0.226 |
| 1.2990 | 262000 | 0.2175 |
| 1.3015 | 262500 | 0.2212 |
| 1.3040 | 263000 | 0.2286 |
| 1.3065 | 263500 | 0.2197 |
| 1.3090 | 264000 | 0.2446 |
| 1.3114 | 264500 | 0.2474 |
| 1.3139 | 265000 | 0.25 |
| 1.3164 | 265500 | 0.2342 |
| 1.3189 | 266000 | 0.2382 |
| 1.3214 | 266500 | 0.2228 |
| 1.3238 | 267000 | 0.2408 |
| 1.3263 | 267500 | 0.2122 |
| 1.3288 | 268000 | 0.2069 |
| 1.3313 | 268500 | 0.2278 |
| 1.3338 | 269000 | 0.23 |
| 1.3362 | 269500 | 0.2458 |
| 1.3387 | 270000 | 0.2375 |
| 1.3412 | 270500 | 0.2324 |
| 1.3437 | 271000 | 0.1933 |
| 1.3462 | 271500 | 0.2282 |
| 1.3486 | 272000 | 0.2308 |
| 1.3511 | 272500 | 0.2405 |
| 1.3536 | 273000 | 0.2097 |
| 1.3561 | 273500 | 0.2146 |
| 1.3585 | 274000 | 0.2025 |
| 1.3610 | 274500 | 0.2444 |
| 1.3635 | 275000 | 0.2063 |
| 1.3660 | 275500 | 0.2165 |
| 1.3685 | 276000 | 0.2347 |
| 1.3709 | 276500 | 0.2188 |
| 1.3734 | 277000 | 0.2005 |
| 1.3759 | 277500 | 0.2168 |
| 1.3784 | 278000 | 0.1846 |
| 1.3809 | 278500 | 0.2299 |
| 1.3833 | 279000 | 0.2108 |
| 1.3858 | 279500 | 0.2209 |
| 1.3883 | 280000 | 0.1987 |
| 1.3908 | 280500 | 0.2218 |
| 1.3933 | 281000 | 0.2078 |
| 1.3957 | 281500 | 0.2268 |
| 1.3982 | 282000 | 0.2208 |
| 1.4007 | 282500 | 0.2114 |
| 1.4032 | 283000 | 0.2111 |
| 1.4057 | 283500 | 0.2091 |
| 1.4081 | 284000 | 0.2301 |
| 1.4106 | 284500 | 0.231 |
| 1.4131 | 285000 | 0.1773 |
| 1.4156 | 285500 | 0.2026 |
| 1.4180 | 286000 | 0.2642 |
| 1.4205 | 286500 | 0.2203 |
| 1.4230 | 287000 | 0.1972 |
| 1.4255 | 287500 | 0.2095 |
| 1.4280 | 288000 | 0.1908 |
| 1.4304 | 288500 | 0.1959 |
| 1.4329 | 289000 | 0.1783 |
| 1.4354 | 289500 | 0.215 |
| 1.4379 | 290000 | 0.2032 |
| 1.4404 | 290500 | 0.195 |
| 1.4428 | 291000 | 0.2339 |
| 1.4453 | 291500 | 0.2118 |
| 1.4478 | 292000 | 0.2089 |
| 1.4503 | 292500 | 0.2201 |
| 1.4528 | 293000 | 0.1976 |
| 1.4552 | 293500 | 0.2068 |
| 1.4577 | 294000 | 0.2256 |
| 1.4602 | 294500 | 0.2233 |
| 1.4627 | 295000 | 0.2022 |
| 1.4651 | 295500 | 0.1961 |
| 1.4676 | 296000 | 0.2252 |
| 1.4701 | 296500 | 0.2185 |
| 1.4726 | 297000 | 0.1927 |
| 1.4751 | 297500 | 0.1983 |
| 1.4775 | 298000 | 0.1956 |
| 1.4800 | 298500 | 0.1851 |
| 1.4825 | 299000 | 0.2053 |
| 1.4850 | 299500 | 0.2106 |
| 1.4875 | 300000 | 0.2221 |
| 1.4899 | 300500 | 0.1912 |
| 1.4924 | 301000 | 0.2068 |
| 1.4949 | 301500 | 0.1929 |
| 1.4974 | 302000 | 0.21 |
| 1.4999 | 302500 | 0.2102 |
| 1.5023 | 303000 | 0.1769 |
| 1.5048 | 303500 | 0.2144 |
| 1.5073 | 304000 | 0.2213 |
| 1.5098 | 304500 | 0.1909 |
| 1.5123 | 305000 | 0.1661 |
| 1.5147 | 305500 | 0.1867 |
| 1.5172 | 306000 | 0.1859 |
| 1.5197 | 306500 | 0.1901 |
| 1.5222 | 307000 | 0.2428 |
| 1.5246 | 307500 | 0.1973 |
| 1.5271 | 308000 | 0.2198 |
| 1.5296 | 308500 | 0.1884 |
| 1.5321 | 309000 | 0.182 |
| 1.5346 | 309500 | 0.1879 |
| 1.5370 | 310000 | 0.1844 |
| 1.5395 | 310500 | 0.2378 |
| 1.5420 | 311000 | 0.18 |
| 1.5445 | 311500 | 0.1745 |
| 1.5470 | 312000 | 0.1723 |
| 1.5494 | 312500 | 0.2071 |
| 1.5519 | 313000 | 0.1799 |
| 1.5544 | 313500 | 0.175 |
| 1.5569 | 314000 | 0.2341 |
| 1.5594 | 314500 | 0.1852 |
| 1.5618 | 315000 | 0.202 |
| 1.5643 | 315500 | 0.1827 |
| 1.5668 | 316000 | 0.2029 |
| 1.5693 | 316500 | 0.1777 |
| 1.5718 | 317000 | 0.2193 |
| 1.5742 | 317500 | 0.1966 |
| 1.5767 | 318000 | 0.1811 |
| 1.5792 | 318500 | 0.1716 |
| 1.5817 | 319000 | 0.2036 |
| 1.5841 | 319500 | 0.1719 |
| 1.5866 | 320000 | 0.1992 |
| 1.5891 | 320500 | 0.1983 |
| 1.5916 | 321000 | 0.2162 |
| 1.5941 | 321500 | 0.2094 |
| 1.5965 | 322000 | 0.2195 |
| 1.5990 | 322500 | 0.1907 |
| 1.6015 | 323000 | 0.2261 |
| 1.6040 | 323500 | 0.1834 |
| 1.6065 | 324000 | 0.1719 |
| 1.6089 | 324500 | 0.1719 |
| 1.6114 | 325000 | 0.1938 |
| 1.6139 | 325500 | 0.1957 |
| 1.6164 | 326000 | 0.1951 |
| 1.6189 | 326500 | 0.1836 |
| 1.6213 | 327000 | 0.1802 |
| 1.6238 | 327500 | 0.1797 |
| 1.6263 | 328000 | 0.1898 |
| 1.6288 | 328500 | 0.2018 |
| 1.6312 | 329000 | 0.1729 |
| 1.6337 | 329500 | 0.2015 |
| 1.6362 | 330000 | 0.1822 |
| 1.6387 | 330500 | 0.1749 |
| 1.6412 | 331000 | 0.1829 |
| 1.6436 | 331500 | 0.2003 |
| 1.6461 | 332000 | 0.1714 |
| 1.6486 | 332500 | 0.1718 |
| 1.6511 | 333000 | 0.1697 |
| 1.6536 | 333500 | 0.1836 |
| 1.6560 | 334000 | 0.1953 |
| 1.6585 | 334500 | 0.1859 |
| 1.6610 | 335000 | 0.1862 |
| 1.6635 | 335500 | 0.1733 |
| 1.6660 | 336000 | 0.1961 |
| 1.6684 | 336500 | 0.1735 |
| 1.6709 | 337000 | 0.1917 |
| 1.6734 | 337500 | 0.2077 |
| 1.6759 | 338000 | 0.171 |
| 1.6784 | 338500 | 0.1741 |
| 1.6808 | 339000 | 0.1719 |
| 1.6833 | 339500 | 0.1672 |
| 1.6858 | 340000 | 0.173 |
| 1.6883 | 340500 | 0.1684 |
| 1.6907 | 341000 | 0.1848 |
| 1.6932 | 341500 | 0.19 |
| 1.6957 | 342000 | 0.1764 |
| 1.6982 | 342500 | 0.1631 |
| 1.7007 | 343000 | 0.1709 |
| 1.7031 | 343500 | 0.1941 |
| 1.7056 | 344000 | 0.1738 |
| 1.7081 | 344500 | 0.1678 |
| 1.7106 | 345000 | 0.1685 |
| 1.7131 | 345500 | 0.1794 |
| 1.7155 | 346000 | 0.1709 |
| 1.7180 | 346500 | 0.1807 |
| 1.7205 | 347000 | 0.2089 |
| 1.7230 | 347500 | 0.1677 |
| 1.7255 | 348000 | 0.1571 |
| 1.7279 | 348500 | 0.2283 |
| 1.7304 | 349000 | 0.183 |
| 1.7329 | 349500 | 0.2039 |
| 1.7354 | 350000 | 0.1896 |
| 1.7378 | 350500 | 0.1921 |
| 1.7403 | 351000 | 0.1983 |
| 1.7428 | 351500 | 0.1738 |
| 1.7453 | 352000 | 0.1871 |
| 1.7478 | 352500 | 0.1936 |
| 1.7502 | 353000 | 0.1726 |
| 1.7527 | 353500 | 0.1822 |
| 1.7552 | 354000 | 0.1687 |
| 1.7577 | 354500 | 0.1733 |
| 1.7602 | 355000 | 0.1721 |
| 1.7626 | 355500 | 0.1838 |
| 1.7651 | 356000 | 0.1503 |
| 1.7676 | 356500 | 0.166 |
| 1.7701 | 357000 | 0.1544 |
| 1.7726 | 357500 | 0.165 |
| 1.7750 | 358000 | 0.1785 |
| 1.7775 | 358500 | 0.1729 |
| 1.7800 | 359000 | 0.1735 |
| 1.7825 | 359500 | 0.1582 |
| 1.7850 | 360000 | 0.1932 |
| 1.7874 | 360500 | 0.1554 |
| 1.7899 | 361000 | 0.1804 |
| 1.7924 | 361500 | 0.1833 |
| 1.7949 | 362000 | 0.1557 |
| 1.7973 | 362500 | 0.1733 |
| 1.7998 | 363000 | 0.1937 |
| 1.8023 | 363500 | 0.1543 |
| 1.8048 | 364000 | 0.2162 |
| 1.8073 | 364500 | 0.1977 |
| 1.8097 | 365000 | 0.1783 |
| 1.8122 | 365500 | 0.1758 |
| 1.8147 | 366000 | 0.2004 |
| 1.8172 | 366500 | 0.1752 |
| 1.8197 | 367000 | 0.1815 |
| 1.8221 | 367500 | 0.1643 |
| 1.8246 | 368000 | 0.1749 |
| 1.8271 | 368500 | 0.1772 |
| 1.8296 | 369000 | 0.1959 |
| 1.8321 | 369500 | 0.1621 |
| 1.8345 | 370000 | 0.2145 |
| 1.8370 | 370500 | 0.1797 |
| 1.8395 | 371000 | 0.174 |
| 1.8420 | 371500 | 0.187 |
| 1.8445 | 372000 | 0.1556 |
| 1.8469 | 372500 | 0.2023 |
| 1.8494 | 373000 | 0.1968 |
| 1.8519 | 373500 | 0.2218 |
| 1.8544 | 374000 | 0.1656 |
| 1.8568 | 374500 | 0.1893 |
| 1.8593 | 375000 | 0.1589 |
| 1.8618 | 375500 | 0.1722 |
| 1.8643 | 376000 | 0.1609 |
| 1.8668 | 376500 | 0.1949 |
| 1.8692 | 377000 | 0.1801 |
| 1.8717 | 377500 | 0.1618 |
| 1.8742 | 378000 | 0.1683 |
| 1.8767 | 378500 | 0.1532 |
| 1.8792 | 379000 | 0.1563 |
| 1.8816 | 379500 | 0.1942 |
| 1.8841 | 380000 | 0.1634 |
| 1.8866 | 380500 | 0.1547 |
| 1.8891 | 381000 | 0.1615 |
| 1.8916 | 381500 | 0.1938 |
| 1.8940 | 382000 | 0.1685 |
| 1.8965 | 382500 | 0.1862 |
| 1.8990 | 383000 | 0.1514 |
| 1.9015 | 383500 | 0.1666 |
| 1.9039 | 384000 | 0.1861 |
| 1.9064 | 384500 | 0.1447 |
| 1.9089 | 385000 | 0.1844 |
| 1.9114 | 385500 | 0.1504 |
| 1.9139 | 386000 | 0.1772 |
| 1.9163 | 386500 | 0.2152 |
| 1.9188 | 387000 | 0.1768 |
| 1.9213 | 387500 | 0.208 |
| 1.9238 | 388000 | 0.1718 |
| 1.9263 | 388500 | 0.1614 |
| 1.9287 | 389000 | 0.1635 |
| 1.9312 | 389500 | 0.1671 |
| 1.9337 | 390000 | 0.1981 |
| 1.9362 | 390500 | 0.1622 |
| 1.9387 | 391000 | 0.1519 |
| 1.9411 | 391500 | 0.1795 |
| 1.9436 | 392000 | 0.1912 |
| 1.9461 | 392500 | 0.1726 |
| 1.9486 | 393000 | 0.1878 |
| 1.9511 | 393500 | 0.1642 |
| 1.9535 | 394000 | 0.1626 |
| 1.9560 | 394500 | 0.1614 |
| 1.9585 | 395000 | 0.2133 |
| 1.9610 | 395500 | 0.1761 |
| 1.9634 | 396000 | 0.1756 |
| 1.9659 | 396500 | 0.1823 |
| 1.9684 | 397000 | 0.1555 |
| 1.9709 | 397500 | 0.1556 |
| 1.9734 | 398000 | 0.1652 |
| 1.9758 | 398500 | 0.1525 |
| 1.9783 | 399000 | 0.1869 |
| 1.9808 | 399500 | 0.1486 |
| 1.9833 | 400000 | 0.1702 |
| 1.9858 | 400500 | 0.1525 |
| 1.9882 | 401000 | 0.167 |
| 1.9907 | 401500 | 0.1929 |
| 1.9932 | 402000 | 0.1478 |
| 1.9957 | 402500 | 0.182 |
| 1.9982 | 403000 | 0.1598 |
</details>
### Framework Versions
- Python: 3.11.4
- Sentence Transformers: 3.3.1
- Transformers: 4.48.0.dev0
- PyTorch: 2.4.0+cu121
- Accelerate: 1.0.1
- Datasets: 2.20.0
- Tokenizers: 0.21.0
## Citation
### BibTeX
#### Sentence Transformers and SoftmaxLoss
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
#### CachedMultipleNegativesRankingLoss
```bibtex
@misc{gao2021scaling,
title={Scaling Deep Contrastive Learning Batch Size under Memory Limited Setup},
author={Luyu Gao and Yunyi Zhang and Jiawei Han and Jamie Callan},
year={2021},
eprint={2101.06983},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
#### AnglELoss
```bibtex
@misc{li2023angleoptimized,
title={AnglE-optimized Text Embeddings},
author={Xianming Li and Jing Li},
year={2023},
eprint={2309.12871},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
#### CoSENTLoss
```bibtex
@online{kexuefm-8847,
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
author={Su Jianlin},
year={2022},
month={Jan},
url={https://kexue.fm/archives/8847},
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |