sileod commited on
Commit
b15ab2d
1 Parent(s): ba6699b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +103 -2
README.md CHANGED
@@ -13,9 +13,110 @@ datasets:
13
 
14
  # Model Card for Model ID
15
 
16
- ModernBERT fine-tuned on tasksource NLI tasks (>20 nli datasets, including MNLI, ANLI, SICK, WANLI, doc-nli, LingNLI, FOLIO, FOL-NLI, LogicNLI, Label-NLI...)
 
17
 
18
- Work in progress.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
 
20
 
21
  ```
 
13
 
14
  # Model Card for Model ID
15
 
16
+ ModernBERT fine-tuned on tasksource NLI tasks, including MNLI, ANLI, SICK, WANLI, doc-nli, LingNLI, FOLIO, FOL-NLI, LogicNLI, Label-NLI...)
17
+ Test accuracy at 10k training steps (current version, 100k steps incoming at the end of the week).
18
 
19
+ | test_name | test_accuracy |
20
+ |:-------------------------------------|----------------:|
21
+ | glue/mnli | 0.82 |
22
+ | glue/qnli | 0.84 |
23
+ | glue/rte | 0.78 |
24
+ | super_glue/cb | 0.75 |
25
+ | anli/a1 | 0.51 |
26
+ | anli/a2 | 0.39 |
27
+ | anli/a3 | 0.38 |
28
+ | sick/label | 0.91 |
29
+ | sick/entailment_AB | 0.81 |
30
+ | snli | 0.82 |
31
+ | scitail/snli_format | 0.94 |
32
+ | hans | 0.99 |
33
+ | WANLI | 0.7 |
34
+ | recast/recast_ner | 0.84 |
35
+ | recast/recast_kg_relations | 0.89 |
36
+ | recast/recast_puns | 0.78 |
37
+ | recast/recast_verbcorner | 0.87 |
38
+ | recast/recast_sentiment | 0.97 |
39
+ | recast/recast_verbnet | 0.74 |
40
+ | recast/recast_factuality | 0.88 |
41
+ | recast/recast_megaveridicality | 0.86 |
42
+ | probability_words_nli/reasoning_2hop | 0.76 |
43
+ | probability_words_nli/reasoning_1hop | 0.84 |
44
+ | probability_words_nli/usnli | 0.7 |
45
+ | nan-nli | 0.62 |
46
+ | nli_fever | 0.71 |
47
+ | breaking_nli | 0.98 |
48
+ | conj_nli | 0.66 |
49
+ | fracas | 0 |
50
+ | dialogue_nli | 0.84 |
51
+ | mpe | 0.69 |
52
+ | dnc | 0.81 |
53
+ | recast_white/fnplus | 0.6 |
54
+ | recast_white/sprl | 0.83 |
55
+ | recast_white/dpr | 0.57 |
56
+ | robust_nli/IS_CS | 0.45 |
57
+ | robust_nli/LI_LI | 0.92 |
58
+ | robust_nli/ST_WO | 0.66 |
59
+ | robust_nli/PI_SP | 0.53 |
60
+ | robust_nli/PI_CD | 0.54 |
61
+ | robust_nli/ST_SE | 0.58 |
62
+ | robust_nli/ST_NE | 0.52 |
63
+ | robust_nli/ST_LM | 0.47 |
64
+ | robust_nli_is_sd | 0.99 |
65
+ | robust_nli_li_ts | 0.81 |
66
+ | add_one_rte | 0.87 |
67
+ | cycic_classification | 0.62 |
68
+ | lingnli | 0.73 |
69
+ | monotonicity-entailment | 0.84 |
70
+ | scinli | 0.65 |
71
+ | naturallogic | 0.77 |
72
+ | syntactic-augmentation-nli | 0.87 |
73
+ | autotnli | 0.83 |
74
+ | defeasible-nli/atomic | 0.72 |
75
+ | defeasible-nli/snli | 0.67 |
76
+ | help-nli | 0.72 |
77
+ | nli-veridicality-transitivity | 0.92 |
78
+ | lonli | 0.88 |
79
+ | dadc-limit-nli | 0.59 |
80
+ | folio | 0.44 |
81
+ | tomi-nli | 0.52 |
82
+ | temporal-nli | 0.62 |
83
+ | counterfactually-augmented-snli | 0.69 |
84
+ | cnli | 0.71 |
85
+ | chaos-mnli-ambiguity | nan |
86
+ | logiqa-2.0-nli | 0.51 |
87
+ | mindgames | 0.83 |
88
+ | ConTRoL-nli | 0.49 |
89
+ | logical-fallacy | 0.13 |
90
+ | conceptrules_v2 | 0.97 |
91
+ | zero-shot-label-nli | 0.67 |
92
+ | scone | 0.79 |
93
+ | monli | 0.76 |
94
+ | SpaceNLI | 0.89 |
95
+ | propsegment/nli | 0.82 |
96
+ | SDOH-NLI | 0.98 |
97
+ | scifact_entailment | 0.52 |
98
+ | AdjectiveScaleProbe-nli | 0.91 |
99
+ | resnli | 0.97 |
100
+ | semantic_fragments_nli | 0.91 |
101
+ | dataset_train_nli | 0.81 |
102
+ | ruletaker | 0.69 |
103
+ | PARARULE-Plus | 1 |
104
+ | logical-entailment | 0.53 |
105
+ | nope | 0.36 |
106
+ | LogicNLI | 0.34 |
107
+ | contract-nli/contractnli_a/seg | 0.79 |
108
+ | contract-nli/contractnli_b/full | 0.67 |
109
+ | nli4ct_semeval2024 | 0.53 |
110
+ | biosift-nli | 0.85 |
111
+ | SIGA-nli | 0.46 |
112
+ | FOL-nli | 0.49 |
113
+ | doc-nli | 0.81 |
114
+ | mctest-nli | 0.84 |
115
+ | idioms-nli | 0.77 |
116
+ | lifecycle-entailment | 0.57 |
117
+ | MSciNLI | 0.65 |
118
+ | babi_nli | 0.77 |
119
+ | gen_debiased_nli | 0.82 |
120
 
121
 
122
  ```