--- library_name: transformers base_model: - answerdotai/ModernBERT-base license: apache-2.0 language: - en pipeline_tag: zero-shot-classification datasets: - nyu-mll/glue - facebook/anli --- # Model Card for Model ID ModernBERT fine-tuned on tasksource NLI tasks, including MNLI, ANLI, SICK, WANLI, doc-nli, LingNLI, FOLIO, FOL-NLI, LogicNLI, Label-NLI...) Test accuracy at 10k training steps (current version, 100k steps incoming at the end of the week). | test_name | test_accuracy | |:-------------------------------------|----------------:| | glue/mnli | 0.82 | | glue/qnli | 0.84 | | glue/rte | 0.78 | | super_glue/cb | 0.75 | | anli/a1 | 0.51 | | anli/a2 | 0.39 | | anli/a3 | 0.38 | | sick/label | 0.91 | | sick/entailment_AB | 0.81 | | snli | 0.82 | | scitail/snli_format | 0.94 | | hans | 0.99 | | WANLI | 0.7 | | recast/recast_ner | 0.84 | | recast/recast_kg_relations | 0.89 | | recast/recast_puns | 0.78 | | recast/recast_verbcorner | 0.87 | | recast/recast_sentiment | 0.97 | | recast/recast_verbnet | 0.74 | | recast/recast_factuality | 0.88 | | recast/recast_megaveridicality | 0.86 | | probability_words_nli/reasoning_2hop | 0.76 | | probability_words_nli/reasoning_1hop | 0.84 | | probability_words_nli/usnli | 0.7 | | nan-nli | 0.62 | | nli_fever | 0.71 | | breaking_nli | 0.98 | | conj_nli | 0.66 | | fracas | 0 | | dialogue_nli | 0.84 | | mpe | 0.69 | | dnc | 0.81 | | recast_white/fnplus | 0.6 | | recast_white/sprl | 0.83 | | recast_white/dpr | 0.57 | | robust_nli/IS_CS | 0.45 | | robust_nli/LI_LI | 0.92 | | robust_nli/ST_WO | 0.66 | | robust_nli/PI_SP | 0.53 | | robust_nli/PI_CD | 0.54 | | robust_nli/ST_SE | 0.58 | | robust_nli/ST_NE | 0.52 | | robust_nli/ST_LM | 0.47 | | robust_nli_is_sd | 0.99 | | robust_nli_li_ts | 0.81 | | add_one_rte | 0.87 | | cycic_classification | 0.62 | | lingnli | 0.73 | | monotonicity-entailment | 0.84 | | scinli | 0.65 | | naturallogic | 0.77 | | syntactic-augmentation-nli | 0.87 | | autotnli | 0.83 | | defeasible-nli/atomic | 0.72 | | defeasible-nli/snli | 0.67 | | help-nli | 0.72 | | nli-veridicality-transitivity | 0.92 | | lonli | 0.88 | | dadc-limit-nli | 0.59 | | folio | 0.44 | | tomi-nli | 0.52 | | temporal-nli | 0.62 | | counterfactually-augmented-snli | 0.69 | | cnli | 0.71 | | chaos-mnli-ambiguity | nan | | logiqa-2.0-nli | 0.51 | | mindgames | 0.83 | | ConTRoL-nli | 0.49 | | logical-fallacy | 0.13 | | conceptrules_v2 | 0.97 | | zero-shot-label-nli | 0.67 | | scone | 0.79 | | monli | 0.76 | | SpaceNLI | 0.89 | | propsegment/nli | 0.82 | | SDOH-NLI | 0.98 | | scifact_entailment | 0.52 | | AdjectiveScaleProbe-nli | 0.91 | | resnli | 0.97 | | semantic_fragments_nli | 0.91 | | dataset_train_nli | 0.81 | | ruletaker | 0.69 | | PARARULE-Plus | 1 | | logical-entailment | 0.53 | | nope | 0.36 | | LogicNLI | 0.34 | | contract-nli/contractnli_a/seg | 0.79 | | contract-nli/contractnli_b/full | 0.67 | | nli4ct_semeval2024 | 0.53 | | biosift-nli | 0.85 | | SIGA-nli | 0.46 | | FOL-nli | 0.49 | | doc-nli | 0.81 | | mctest-nli | 0.84 | | idioms-nli | 0.77 | | lifecycle-entailment | 0.57 | | MSciNLI | 0.65 | | babi_nli | 0.77 | | gen_debiased_nli | 0.82 | ``` @inproceedings{sileo-2024-tasksource, title = "tasksource: A Large Collection of {NLP} tasks with a Structured Dataset Preprocessing Framework", author = "Sileo, Damien", booktitle = "Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)", month = may, year = "2024", address = "Torino, Italia", publisher = "ELRA and ICCL", url = "https://aclanthology.org/2024.lrec-main.1361", pages = "15655--15684", } ```