File size: 10,520 Bytes
972a901 664a230 7014626 8b7f75c 7014626 9941d36 cbaac95 561b498 972a901 944c071 16fcb24 e45631e 04dcf11 e45631e d6e08f6 2106a8a d6e08f6 2106a8a e45631e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 |
---
base_model: microsoft/deberta-v3-base
datasets:
- nyu-mll/glue
- aps/super_glue
- facebook/anli
- tasksource/babi_nli
- sick
- snli
- scitail
- hans
- alisawuffles/WANLI
- tasksource/recast
- sileod/probability_words_nli
- joey234/nan-nli
- pietrolesci/nli_fever
- pietrolesci/breaking_nli
- pietrolesci/conj_nli
- pietrolesci/fracas
- pietrolesci/dialogue_nli
- pietrolesci/mpe
- pietrolesci/dnc
- pietrolesci/recast_white
- pietrolesci/joci
- pietrolesci/robust_nli
- pietrolesci/robust_nli_is_sd
- pietrolesci/robust_nli_li_ts
- pietrolesci/gen_debiased_nli
- pietrolesci/add_one_rte
- tasksource/imppres
- hlgd
- paws
- medical_questions_pairs
- Anthropic/model-written-evals
- truthful_qa
- nightingal3/fig-qa
- tasksource/bigbench
- blimp
- cos_e
- cosmos_qa
- dream
- openbookqa
- qasc
- quartz
- quail
- head_qa
- sciq
- social_i_qa
- wiki_hop
- wiqa
- piqa
- hellaswag
- pkavumba/balanced-copa
- 12ml/e-CARE
- art
- winogrande
- codah
- ai2_arc
- definite_pronoun_resolution
- swag
- math_qa
- metaeval/utilitarianism
- mteb/amazon_counterfactual
- SetFit/insincere-questions
- SetFit/toxic_conversations
- turingbench/TuringBench
- trec
- tals/vitaminc
- hope_edi
- strombergnlp/rumoureval_2019
- ethos
- tweet_eval
- discovery
- pragmeval
- silicone
- lex_glue
- papluca/language-identification
- imdb
- rotten_tomatoes
- ag_news
- yelp_review_full
- financial_phrasebank
- poem_sentiment
- dbpedia_14
- amazon_polarity
- app_reviews
- hate_speech18
- sms_spam
- humicroedit
- snips_built_in_intents
- hate_speech_offensive
- yahoo_answers_topics
- pacovaldez/stackoverflow-questions
- zapsdcn/hyperpartisan_news
- zapsdcn/sciie
- zapsdcn/citation_intent
- go_emotions
- allenai/scicite
- liar
- relbert/lexical_relation_classification
- tasksource/linguisticprobing
- tasksource/crowdflower
- metaeval/ethics
- emo
- google_wellformed_query
- tweets_hate_speech_detection
- has_part
- blog_authorship_corpus
- launch/open_question_type
- health_fact
- commonsense_qa
- mc_taco
- ade_corpus_v2
- prajjwal1/discosense
- circa
- PiC/phrase_similarity
- copenlu/scientific-exaggeration-detection
- quarel
- mwong/fever-evidence-related
- numer_sense
- dynabench/dynasent
- raquiba/Sarcasm_News_Headline
- sem_eval_2010_task_8
- demo-org/auditor_review
- medmcqa
- RuyuanWan/Dynasent_Disagreement
- RuyuanWan/Politeness_Disagreement
- RuyuanWan/SBIC_Disagreement
- RuyuanWan/SChem_Disagreement
- RuyuanWan/Dilemmas_Disagreement
- lucasmccabe/logiqa
- wiki_qa
- tasksource/cycic_classification
- tasksource/cycic_multiplechoice
- tasksource/sts-companion
- tasksource/commonsense_qa_2.0
- tasksource/lingnli
- tasksource/monotonicity-entailment
- tasksource/arct
- tasksource/scinli
- tasksource/naturallogic
- onestop_qa
- demelin/moral_stories
- corypaik/prost
- aps/dynahate
- metaeval/syntactic-augmentation-nli
- tasksource/autotnli
- lasha-nlp/CONDAQA
- openai/webgpt_comparisons
- Dahoas/synthetic-instruct-gptj-pairwise
- metaeval/scruples
- metaeval/wouldyourather
- metaeval/defeasible-nli
- tasksource/help-nli
- metaeval/nli-veridicality-transitivity
- tasksource/lonli
- tasksource/dadc-limit-nli
- ColumbiaNLP/FLUTE
- tasksource/strategy-qa
- openai/summarize_from_feedback
- tasksource/folio
- yale-nlp/FOLIO
- tasksource/tomi-nli
- tasksource/avicenna
- stanfordnlp/SHP
- GBaker/MedQA-USMLE-4-options-hf
- sileod/wikimedqa
- declare-lab/cicero
- amydeng2000/CREAK
- tasksource/mutual
- inverse-scaling/NeQA
- inverse-scaling/quote-repetition
- inverse-scaling/redefine-math
- tasksource/puzzte
- tasksource/implicatures
- race
- tasksource/race-c
- tasksource/spartqa-yn
- tasksource/spartqa-mchoice
- tasksource/temporal-nli
- riddle_sense
- tasksource/clcd-english
- maximedb/twentyquestions
- metaeval/reclor
- tasksource/counterfactually-augmented-imdb
- tasksource/counterfactually-augmented-snli
- metaeval/cnli
- tasksource/boolq-natural-perturbations
- metaeval/acceptability-prediction
- metaeval/equate
- tasksource/ScienceQA_text_only
- Jiangjie/ekar_english
- tasksource/implicit-hate-stg1
- metaeval/chaos-mnli-ambiguity
- IlyaGusev/headline_cause
- tasksource/logiqa-2.0-nli
- tasksource/oasst2_dense_flat
- sileod/mindgames
- metaeval/ambient
- metaeval/path-naturalness-prediction
- civil_comments
- AndyChiang/cloth
- AndyChiang/dgen
- tasksource/I2D2
- webis/args_me
- webis/Touche23-ValueEval
- tasksource/starcon
- PolyAI/banking77
- tasksource/ConTRoL-nli
- tasksource/tracie
- tasksource/sherliic
- tasksource/sen-making
- tasksource/winowhy
- tasksource/robustLR
- CLUTRR/v1
- tasksource/logical-fallacy
- tasksource/parade
- tasksource/cladder
- tasksource/subjectivity
- tasksource/MOH
- tasksource/VUAC
- tasksource/TroFi
- sharc_modified
- tasksource/conceptrules_v2
- metaeval/disrpt
- tasksource/zero-shot-label-nli
- tasksource/com2sense
- tasksource/scone
- tasksource/winodict
- tasksource/fool-me-twice
- tasksource/monli
- tasksource/corr2cause
- lighteval/lsat_qa
- tasksource/apt
- zeroshot/twitter-financial-news-sentiment
- tasksource/icl-symbol-tuning-instruct
- tasksource/SpaceNLI
- sihaochen/propsegment
- HannahRoseKirk/HatemojiBuild
- tasksource/regset
- tasksource/esci
- lmsys/chatbot_arena_conversations
- neurae/dnd_style_intents
- hitachi-nlp/FLD.v2
- tasksource/SDOH-NLI
- allenai/scifact_entailment
- tasksource/feasibilityQA
- tasksource/simple_pair
- tasksource/AdjectiveScaleProbe-nli
- tasksource/resnli
- tasksource/SpaRTUN
- tasksource/ReSQ
- tasksource/semantic_fragments_nli
- MoritzLaurer/dataset_train_nli
- tasksource/stepgame
- tasksource/nlgraph
- tasksource/oasst2_pairwise_rlhf_reward
- tasksource/hh-rlhf
- tasksource/ruletaker
- qbao775/PARARULE-Plus
- tasksource/proofwriter
- tasksource/logical-entailment
- tasksource/nope
- tasksource/LogicNLI
- kiddothe2b/contract-nli
- AshtonIsNotHere/nli4ct_semeval2024
- tasksource/lsat-ar
- tasksource/lsat-rc
- AshtonIsNotHere/biosift-nli
- tasksource/brainteasers
- Anthropic/persuasion
- erbacher/AmbigNQ-clarifying-question
- tasksource/SIGA-nli
- unigram/FOL-nli
- tasksource/goal-step-wikihow
- GGLab/PARADISE
- tasksource/doc-nli
- tasksource/mctest-nli
- tasksource/patent-phrase-similarity
- tasksource/natural-language-satisfiability
- tasksource/idioms-nli
- tasksource/lifecycle-entailment
- nvidia/HelpSteer
- nvidia/HelpSteer2
- sadat2307/MSciNLI
- pushpdeep/UltraFeedback-paired
- tasksource/AES2-essay-scoring
- tasksource/english-grading
- tasksource/wice
- Dzeniks/hover
- tasksource/tasksource_dpo_pairs
library_name: transformers
pipeline_tag: zero-shot-classification
tags:
- text-classification
- zero-shot-classification
license: apache-2.0
---
# Model Card for Model ID
deberta-v3-base with context length of 1280 fine-tuned on tasksource for 250k steps. I oversampled long NLI tasks (ConTRoL, doc-nli).
Training data include helpsteer v1/v2, logical reasoning tasks (FOLIO, FOL-nli, LogicNLI...), OASST, hh/rlhf, linguistics oriented NLI tasks, tasksource-dpo, fact verification tasks.
This checkpoint has strong zero-shot validation performance on many tasks (e.g. 70% on WNLI), and can be used for:
- Zero-shot entailment-based classification for arbitrary labels [ZS].
- Natural language inference [NLI]
- Further fine-tuning on a new task or tasksource task (classification, token classification, reward modeling or multiple-choice) [FT].
| dataset | accuracy |
|:----------------------------|----------------:|
| anli/a1 | 63.3 |
| anli/a2 | 47.2 |
| anli/a3 | 49.4 |
| nli_fever | 79.4 |
| FOLIO | 61.8 |
| ConTRoL-nli | 63.3 |
| cladder | 71.1 |
| zero-shot-label-nli | 74.4 |
| chatbot_arena_conversations | 72.2 |
| oasst2_pairwise_rlhf_reward | 73.9 |
| doc-nli | 90.0 |
Zero-shot GPT-4 scores 61% on FOLIO (logical reasoning), 62% on cladder (probabilistic reasoning) and 56.4% on ConTRoL (long context NLI).
# [ZS] Zero-shot classification pipeline
```python
from transformers import pipeline
classifier = pipeline("zero-shot-classification",model="tasksource/deberta-base-long-nli")
text = "one day I will see the world"
candidate_labels = ['travel', 'cooking', 'dancing']
classifier(text, candidate_labels)
```
NLI training data of this model includes [label-nli](https://huggingface.co/datasets/tasksource/zero-shot-label-nli), a NLI dataset specially constructed to improve this kind of zero-shot classification.
# [NLI] Natural language inference pipeline
```python
from transformers import pipeline
pipe = pipeline("text-classification",model="tasksource/deberta-base-long-nli")
pipe([dict(text='there is a cat',
text_pair='there is a black cat')]) #list of (premise,hypothesis)
# [{'label': 'neutral', 'score': 0.9952911138534546}]
```
# [TA] Tasksource-adapters: 1 line access to hundreds of tasks
```python
# !pip install tasknet
import tasknet as tn
pipe = tn.load_pipeline('tasksource/deberta-base-long-nli','glue/sst2') # works for 500+ tasksource tasks
pipe(['That movie was great !', 'Awful movie.'])
# [{'label': 'positive', 'score': 0.9956}, {'label': 'negative', 'score': 0.9967}]
```
The list of tasks is available in model config.json.
This is more efficient than ZS since it requires only one forward pass per example, but it is less flexible.
# [FT] Tasknet: 3 lines fine-tuning
```python
# !pip install tasknet
import tasknet as tn
hparams=dict(model_name='tasksource/deberta-base-long-nli', learning_rate=2e-5)
model, trainer = tn.Model_Trainer([tn.AutoTask("glue/rte")], hparams)
trainer.train()
```
# Citation
More details on this [article:](https://aclanthology.org/2024.lrec-main.1361/)
```
@inproceedings{sileo-2024-tasksource,
title = "tasksource: A Large Collection of {NLP} tasks with a Structured Dataset Preprocessing Framework",
author = "Sileo, Damien",
editor = "Calzolari, Nicoletta and
Kan, Min-Yen and
Hoste, Veronique and
Lenci, Alessandro and
Sakti, Sakriani and
Xue, Nianwen",
booktitle = "Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)",
month = may,
year = "2024",
address = "Torino, Italia",
publisher = "ELRA and ICCL",
url = "https://aclanthology.org/2024.lrec-main.1361",
pages = "15655--15684",
}
```
|