--- datasets: - nyu-mll/glue - super_glue - facebook/anli - tasksource/babi_nli - sick - snli - scitail - OpenAssistant/oasst1 - universal_dependencies - hans - qbao775/PARARULE-Plus - alisawuffles/WANLI - metaeval/recast - sileod/probability_words_nli - joey234/nan-nli - pietrolesci/nli_fever - pietrolesci/breaking_nli - pietrolesci/conj_nli - pietrolesci/fracas - pietrolesci/dialogue_nli - pietrolesci/mpe - pietrolesci/dnc - pietrolesci/gpt3_nli - pietrolesci/recast_white - pietrolesci/joci - martn-nguyen/contrast_nli - pietrolesci/robust_nli - pietrolesci/robust_nli_is_sd - pietrolesci/robust_nli_li_ts - pietrolesci/gen_debiased_nli - pietrolesci/add_one_rte - metaeval/imppres - pietrolesci/glue_diagnostics - hlgd - PolyAI/banking77 - paws - quora - medical_questions_pairs - conll2003 - nlpaueb/finer-139 - Anthropic/hh-rlhf - Anthropic/model-written-evals - truthful_qa - nightingal3/fig-qa - tasksource/bigbench - blimp - cos_e - cosmos_qa - dream - openbookqa - qasc - quartz - quail - head_qa - sciq - social_i_qa - wiki_hop - wiqa - piqa - hellaswag - pkavumba/balanced-copa - 12ml/e-CARE - art - tasksource/mmlu - winogrande - codah - ai2_arc - definite_pronoun_resolution - swag - math_qa - metaeval/utilitarianism - mteb/amazon_counterfactual - SetFit/insincere-questions - SetFit/toxic_conversations - turingbench/TuringBench - trec - tals/vitaminc - hope_edi - strombergnlp/rumoureval_2019 - ethos - tweet_eval - discovery - pragmeval - silicone - lex_glue - papluca/language-identification - imdb - rotten_tomatoes - ag_news - yelp_review_full - financial_phrasebank - poem_sentiment - dbpedia_14 - amazon_polarity - app_reviews - hate_speech18 - sms_spam - humicroedit - snips_built_in_intents - banking77 - hate_speech_offensive - yahoo_answers_topics - pacovaldez/stackoverflow-questions - zapsdcn/hyperpartisan_news - zapsdcn/sciie - zapsdcn/citation_intent - go_emotions - allenai/scicite - liar - relbert/lexical_relation_classification - metaeval/linguisticprobing - tasksource/crowdflower - metaeval/ethics - emo - google_wellformed_query - tweets_hate_speech_detection - has_part - wnut_17 - ncbi_disease - acronym_identification - jnlpba - species_800 - SpeedOfMagic/ontonotes_english - blog_authorship_corpus - launch/open_question_type - health_fact - commonsense_qa - mc_taco - ade_corpus_v2 - prajjwal1/discosense - circa - PiC/phrase_similarity - copenlu/scientific-exaggeration-detection - quarel - mwong/fever-evidence-related - numer_sense - dynabench/dynasent - raquiba/Sarcasm_News_Headline - sem_eval_2010_task_8 - demo-org/auditor_review - medmcqa - aqua_rat - RuyuanWan/Dynasent_Disagreement - RuyuanWan/Politeness_Disagreement - RuyuanWan/SBIC_Disagreement - RuyuanWan/SChem_Disagreement - RuyuanWan/Dilemmas_Disagreement - lucasmccabe/logiqa - wiki_qa - metaeval/cycic_classification - metaeval/cycic_multiplechoice - metaeval/sts-companion - metaeval/commonsense_qa_2.0 - metaeval/lingnli - metaeval/monotonicity-entailment - metaeval/arct - metaeval/scinli - metaeval/naturallogic - onestop_qa - demelin/moral_stories - corypaik/prost - aps/dynahate - metaeval/syntactic-augmentation-nli - metaeval/autotnli - lasha-nlp/CONDAQA - openai/webgpt_comparisons - Dahoas/synthetic-instruct-gptj-pairwise - metaeval/scruples - metaeval/wouldyourather - sileod/attempto-nli - metaeval/defeasible-nli - metaeval/help-nli - metaeval/nli-veridicality-transitivity - metaeval/natural-language-satisfiability - metaeval/lonli - tasksource/dadc-limit-nli - ColumbiaNLP/FLUTE - metaeval/strategy-qa - openai/summarize_from_feedback - tasksource/folio - metaeval/tomi-nli - metaeval/avicenna - stanfordnlp/SHP - GBaker/MedQA-USMLE-4-options-hf - GBaker/MedQA-USMLE-4-options - sileod/wikimedqa - declare-lab/cicero - amydeng2000/CREAK - metaeval/mutual - inverse-scaling/NeQA - inverse-scaling/quote-repetition - inverse-scaling/redefine-math - tasksource/puzzte - metaeval/implicatures - race - metaeval/spartqa-yn - metaeval/spartqa-mchoice - metaeval/temporal-nli - metaeval/ScienceQA_text_only - AndyChiang/cloth - metaeval/logiqa-2.0-nli - tasksource/oasst1_dense_flat - metaeval/boolq-natural-perturbations - metaeval/path-naturalness-prediction - riddle_sense - Jiangjie/ekar_english - metaeval/implicit-hate-stg1 - metaeval/chaos-mnli-ambiguity - IlyaGusev/headline_cause - metaeval/race-c - metaeval/equate - metaeval/ambient - AndyChiang/dgen - metaeval/clcd-english - civil_comments - metaeval/acceptability-prediction - maximedb/twentyquestions - metaeval/counterfactually-augmented-snli - tasksource/I2D2 - sileod/mindgames - metaeval/counterfactually-augmented-imdb - metaeval/cnli - metaeval/reclor - tasksource/oasst1_pairwise_rlhf_reward - tasksource/zero-shot-label-nli - webis/args_me - webis/Touche23-ValueEval - tasksource/starcon - tasksource/ruletaker - lighteval/lsat_qa - tasksource/ConTRoL-nli - tasksource/tracie - tasksource/sherliic - tasksource/sen-making - tasksource/winowhy - mediabiasgroup/mbib-base - tasksource/robustLR - CLUTRR/v1 - tasksource/logical-fallacy - tasksource/parade - tasksource/cladder - tasksource/subjectivity - tasksource/MOH - tasksource/VUAC - tasksource/TroFi - sharc_modified - tasksource/conceptrules_v2 - tasksource/disrpt - conll2000 - DFKI-SLT/few-nerd - tasksource/com2sense - tasksource/scone - tasksource/winodict - tasksource/fool-me-twice - tasksource/monli - tasksource/corr2cause - tasksource/apt - zeroshot/twitter-financial-news-sentiment - tasksource/icl-symbol-tuning-instruct - tasksource/SpaceNLI - sihaochen/propsegment - HannahRoseKirk/HatemojiBuild - tasksource/regset - tasksource/babi_nli - lmsys/chatbot_arena_conversations language: en library_name: transformers license: apache-2.0 metrics: - accuracy pipeline_tag: zero-shot-classification tags: - deberta-v3-small - deberta-v3 - deberta - text-classification - nli - natural-language-inference - multitask - multi-task - pipeline - extreme-multi-task - extreme-mtl - tasksource - zero-shot - rlhf --- # Model Card for DeBERTa-v3-small-tasksource-nli This is [DeBERTa-v3-small](https://hf.co/microsoft/deberta-v3-small) fine-tuned with multi-task learning on 600+ tasks of the [tasksource collection](https://github.com/sileod/tasksource/). This checkpoint has strong zero-shot validation performance on many tasks, and can be used for: - Zero-shot entailment-based classification for arbitrary labels [ZS]. - Natural language inference [NLI] - Hundreds of previous tasks with tasksource-adapters [TA]. - Further fine-tuning on a new task or tasksource task (classification, token classification or multiple-choice) [FT]. # [ZS] Zero-shot classification pipeline ```python from transformers import pipeline classifier = pipeline("zero-shot-classification",model="sileod/deberta-v3-small-tasksource-nli") text = "one day I will see the world" candidate_labels = ['travel', 'cooking', 'dancing'] classifier(text, candidate_labels) ``` NLI training data of this model includes [label-nli](https://huggingface.co/datasets/tasksource/zero-shot-label-nli), a NLI dataset specially constructed to improve this kind of zero-shot classification. # [NLI] Natural language inference pipeline ```python from transformers import pipeline pipe = pipeline("text-classification",model="sileod/deberta-v3-small-tasksource-nli") pipe([dict(text='there is a cat', text_pair='there is a black cat')]) #list of (premise,hypothesis) # [{'label': 'neutral', 'score': 0.9952911138534546}] ``` # [TA] Tasksource-adapters: 1 line access to hundreds of tasks ```python # !pip install tasknet import tasknet as tn pipe = tn.load_pipeline('sileod/deberta-v3-small-tasksource-nli','glue/sst2') # works for 500+ tasksource tasks pipe(['That movie was great !', 'Awful movie.']) # [{'label': 'positive', 'score': 0.9956}, {'label': 'negative', 'score': 0.9967}] ``` The list of tasks is available in model config.json. This is more efficient than ZS since it requires only one forward pass per example, but it is less flexible. # [FT] Tasknet: 3 lines fine-tuning ```python # !pip install tasknet import tasknet as tn hparams=dict(model_name='sileod/deberta-v3-small-tasksource-nli', learning_rate=2e-5) model, trainer = tn.Model_Trainer([tn.AutoTask("glue/rte")], hparams) trainer.train() ``` ## Evaluation This the base equivalent of this model was ranked 1st among all models with the microsoft/deberta-v3-base architecture according to the IBM model recycling evaluation. https://ibm.github.io/model-recycling/ ### Software and training details The model was trained on 600 tasks for 200k steps with a batch size of 384 and a peak learning rate of 2e-5. Training took 12 days on Nvidia A30 24GB gpu. This is the shared model with the MNLI classifier on top. Each task had a specific CLS embedding, which is dropped 10% of the time to facilitate model use without it. All multiple-choice model used the same classification layers. For classification tasks, models shared weights if their labels matched. https://github.com/sileod/tasksource/ \ https://github.com/sileod/tasknet/ \ Training code: https://colab.research.google.com/drive/1iB4Oxl9_B5W3ZDzXoWJN-olUbqLBxgQS?usp=sharing # Citation More details on this [article:](https://arxiv.org/abs/2301.05948) ``` @article{sileo2023tasksource, title={tasksource: Structured Dataset Preprocessing Annotations for Frictionless Extreme Multi-Task Learning and Evaluation}, author={Sileo, Damien}, url= {https://arxiv.org/abs/2301.05948}, journal={arXiv preprint arXiv:2301.05948}, year={2023} } ``` # Model Card Contact damien.sileo@inria.fr