ppo-LunarLander-v2 / config.json
Francis Felici
Upload PPO LunarLander-v2 trained agent
ea084f9
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f0aa3bd57a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0aa3bd5830>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0aa3bd58c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0aa3bd5950>", "_build": "<function ActorCriticPolicy._build at 0x7f0aa3bd59e0>", "forward": "<function ActorCriticPolicy.forward at 0x7f0aa3bd5a70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0aa3bd5b00>", "_predict": "<function ActorCriticPolicy._predict at 0x7f0aa3bd5b90>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0aa3bd5c20>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0aa3bd5cb0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0aa3bd5d40>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f0aa3efe0c0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1228800, "_total_timesteps": 1227160, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1667682989057335145, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM1Pvr0E6Z4/0Lvhvl0gIb984s29VUIyvgAAAAAAAAAAmpVgPdcFUrvCRbi7tGnXO3FQnDxscce8AACAPwAAgD+Az0G9SBGUuvHdkT1q+IWxS4ASO96t1rMAAIA/AACAP1qqCL5xokI+3sAfPgsjpL6Pase9vQrVPQAAAAAAAAAA2t6EPSmRLrxQgzI8EZeYPMWelL2FKHs9AACAPwAAgD9mR/M8lGhPP1qp/LlQ9AK/eRMbPmJw2T0AAAAAAAAAAM3cfbspwC47gR2IPGYear5WIHW918e/PgAAgD8AAAAAA4lhvsID+D5ZCMC8TiAEvyQHN74nFbM9AAAAAAAAAADNx6S8HJQFPY5hjj4FNFe+QoUAPY9qQj0AAAAAAAAAAM1w6jxIq4S62juIuEE5QLUgdEI7qt6fNwAAgD8AAIA/AJyivJpCeT4dlNY8kZ2Evs1K6LzKzGG9AAAAAAAAAAAAWSi+XoXBPdEVlD6lgRu+2kN3vULY+j0AAAAAAAAAAMYbHD4wIeM+s5JPvgZ/BL9IuJ08Cu0TvgAAAAAAAAAAszHoPUg7kbomyvo2boQmNlhK1jo2yCA3AACAPwAAgD8y7pq+p+0EP9DAfb1Uvg+/YfZdvraMcTsAAAAAAAAAABPOTD6jBzI//k6+vquTFL8rXaY+3jTwvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0013364190488607264, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVJBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMINnaJ6q35cUCUhpRSlIwBbJRL9owBdJRHQMzS2mwA2ht1fZQoaAZoCWgPQwgUXKyowY9vQJSGlFKUaBVL4GgWR0DM0tv4ubqhdX2UKGgGaAloD0MIrfpcbUXickCUhpRSlGgVS85oFkdAzNLfsRg7YHV9lChoBmgJaA9DCLgHISAf+nBAlIaUUpRoFUvBaBZHQMzS6No8IRh1fZQoaAZoCWgPQwhvY7Mj1aNyQJSGlFKUaBVNHgFoFkdAzNLwZrpJPXV9lChoBmgJaA9DCBU3bjE/SXJAlIaUUpRoFUvbaBZHQMzTBD1PFeh1fZQoaAZoCWgPQwguy9dlOFxwQJSGlFKUaBVL0WgWR0DM0x+ldkaudX2UKGgGaAloD0MIY7g6AOLwb0CUhpRSlGgVS9RoFkdAzNM7YOlO5HV9lChoBmgJaA9DCOlhaHUym3JAlIaUUpRoFUvHaBZHQMzTUCYTkAB1fZQoaAZoCWgPQwi6ERYVcaJvQJSGlFKUaBVL4GgWR0DM006tNi6QdX2UKGgGaAloD0MINpAuNu2IcECUhpRSlGgVS89oFkdAzNNQef7Jn3V9lChoBmgJaA9DCDaSBOFKhHBAlIaUUpRoFUvhaBZHQMzTabR4QjF1fZQoaAZoCWgPQwgf9GxWfRNyQJSGlFKUaBVLwWgWR0DM02uFJxvOdX2UKGgGaAloD0MIu5hmuldBcECUhpRSlGgVS9poFkdAzNNr+AEt/XV9lChoBmgJaA9DCLZLGw5LAHFAlIaUUpRoFUvNaBZHQMzTg+MqBmR1fZQoaAZoCWgPQwg/5C1Xf7BwQJSGlFKUaBVL7mgWR0DM044fjjrBdX2UKGgGaAloD0MIthMlIRFocUCUhpRSlGgVS9xoFkdAzNOd7x/d7HV9lChoBmgJaA9DCO3UXG5wlXJAlIaUUpRoFUvtaBZHQMzTq2saKk51fZQoaAZoCWgPQwjle0YiNMhwQJSGlFKUaBVL9WgWR0DM07jfYSQHdX2UKGgGaAloD0MIj4mUZnOqckCUhpRSlGgVS8toFkdAzNO8WIoE0XV9lChoBmgJaA9DCJ2dDI7SUnNAlIaUUpRoFU0JAWgWR0DM09MiQkondX2UKGgGaAloD0MICvKzkWupcUCUhpRSlGgVS8xoFkdAzNPXAymALHV9lChoBmgJaA9DCGowDcPHtnFAlIaUUpRoFU0GAWgWR0DM09ie05U+dX2UKGgGaAloD0MIui2RC46RcECUhpRSlGgVS71oFkdAzNP28r7O3XV9lChoBmgJaA9DCJq1FJC2P3BAlIaUUpRoFUvUaBZHQMzT+A0bcXZ1fZQoaAZoCWgPQwix/Pm24GdvQJSGlFKUaBVLwmgWR0DM0/s078vVdX2UKGgGaAloD0MI0qkrn+VYcUCUhpRSlGgVS+RoFkdAzNZBLmITG3V9lChoBmgJaA9DCI/66xWWjXJAlIaUUpRoFUvNaBZHQMzWScKXv6V1fZQoaAZoCWgPQwhQxvgwuxFwQJSGlFKUaBVL0GgWR0DM1k0DKYAsdX2UKGgGaAloD0MI1XYTfJNSc0CUhpRSlGgVS+doFkdAzNZfoSL613V9lChoBmgJaA9DCKgck8W9inJAlIaUUpRoFUvcaBZHQMzWcJOWSlp1fZQoaAZoCWgPQwiLMhtkEjdvQJSGlFKUaBVL0WgWR0DM1oDnX/YKdX2UKGgGaAloD0MIaK7TSAt8ckCUhpRSlGgVS8toFkdAzNadr3TNMXV9lChoBmgJaA9DCNo391dPkXBAlIaUUpRoFUvjaBZHQMzWo2/8EV51fZQoaAZoCWgPQwif508blQByQJSGlFKUaBVNBQFoFkdAzNakID5j6XV9lChoBmgJaA9DCHsS2JzDjXBAlIaUUpRoFUveaBZHQMzWq/KyOaR1fZQoaAZoCWgPQwipbFhT2XNzQJSGlFKUaBVLvmgWR0DM1q9qcmShdX2UKGgGaAloD0MIq0IDsSxJcUCUhpRSlGgVS8xoFkdAzNa9Gc4HX3V9lChoBmgJaA9DCLddaK4TG3JAlIaUUpRoFUveaBZHQMzWxjDKoyd1fZQoaAZoCWgPQwgOZ341hw9zQJSGlFKUaBVLwmgWR0DM1tL6rNnodX2UKGgGaAloD0MIAdpWs443c0CUhpRSlGgVS8RoFkdAzNbT6MzdlHV9lChoBmgJaA9DCCtR9pbyb29AlIaUUpRoFUu1aBZHQMzW5YTsY2t1fZQoaAZoCWgPQwguc7os5kdxQJSGlFKUaBVLrGgWR0DM1uf9pAUtdX2UKGgGaAloD0MIOV6B6ImCckCUhpRSlGgVS95oFkdAzNbsgrYoRnV9lChoBmgJaA9DCKeSAaAKc3NAlIaUUpRoFUvGaBZHQMzXDlEAo5R1fZQoaAZoCWgPQwh3Sgfrf9VwQJSGlFKUaBVL32gWR0DM1w9BMSK4dX2UKGgGaAloD0MIT+YffZMmIkCUhpRSlGgVS3doFkdAzNcNzZHuqnV9lChoBmgJaA9DCBUA4xl0ynBAlIaUUpRoFUvnaBZHQMzXPihFmWd1fZQoaAZoCWgPQwjQmEnUC3lwQJSGlFKUaBVL6mgWR0DM11KDsdDIdX2UKGgGaAloD0MIyjFZ3H9zcECUhpRSlGgVS9FoFkdAzNdVZid8RnV9lChoBmgJaA9DCHHl7J2RjHFAlIaUUpRoFUvGaBZHQMzXXRbKRuF1fZQoaAZoCWgPQwjLD1zliTZyQJSGlFKUaBVL0WgWR0DM11usT37DdX2UKGgGaAloD0MIru/DQUKxcUCUhpRSlGgVS9ZoFkdAzNdfzCk43nV9lChoBmgJaA9DCBU5RNwc/XFAlIaUUpRoFUvAaBZHQMzXZaT4cm11fZQoaAZoCWgPQwi8lLpkHNtvQJSGlFKUaBVLxWgWR0DM15SBmPHUdX2UKGgGaAloD0MIzQGCOfpLc0CUhpRSlGgVS+ZoFkdAzNeel2vB8HV9lChoBmgJaA9DCJEPejbrY3FAlIaUUpRoFUvRaBZHQMzXqTjFQ2x1fZQoaAZoCWgPQwiI2jaMQi5zQJSGlFKUaBVL2WgWR0DM16s7uDzzdX2UKGgGaAloD0MIN4lBYKUXc0CUhpRSlGgVTQ4BaBZHQMzXtHhCMP11fZQoaAZoCWgPQwjvkc1V88xvQJSGlFKUaBVLwGgWR0DM172Eug6EdX2UKGgGaAloD0MIA9AoXTrQckCUhpRSlGgVS99oFkdAzNfXb/wRXnV9lChoBmgJaA9DCGraxTTTAnFAlIaUUpRoFUvwaBZHQMzX55jx0+11fZQoaAZoCWgPQwhjuaXVEJZvQJSGlFKUaBVLuGgWR0DM1/l+3H7xdX2UKGgGaAloD0MIOjyE8VMzc0CUhpRSlGgVS9RoFkdAzNf+IomXxHV9lChoBmgJaA9DCEt0llkEqW9AlIaUUpRoFUvDaBZHQMzYCO7HyVh1fZQoaAZoCWgPQwjIz0au2zNwQJSGlFKUaBVLy2gWR0DM2Bq/O+qSdX2UKGgGaAloD0MIRrOyfQivcUCUhpRSlGgVS+VoFkdAzNgfzlLeynV9lChoBmgJaA9DCDihEAGH3XBAlIaUUpRoFUvmaBZHQMzYKy7PIGR1fZQoaAZoCWgPQwgNwtzu5QtwQJSGlFKUaBVL82gWR0DM2Dj6UJOWdX2UKGgGaAloD0MIKAtfX6txcUCUhpRSlGgVS8NoFkdAzNhaOgg5inV9lChoBmgJaA9DCL3iqUcaZ3FAlIaUUpRoFUvZaBZHQMzYZhpHqeN1fZQoaAZoCWgPQwgzGvm8opxyQJSGlFKUaBVLw2gWR0DM2Gc+cH4XdX2UKGgGaAloD0MI94+F6NBfcECUhpRSlGgVS7hoFkdAzNhn4D9wWHV9lChoBmgJaA9DCBqLprOTRmlAlIaUUpRoFU3HAWgWR0DM2Gxf4REndX2UKGgGaAloD0MImGiQgqcnc0CUhpRSlGgVS+toFkdAzNhsOQQtjHV9lChoBmgJaA9DCFYsflMYRHFAlIaUUpRoFUvbaBZHQMzYcXIlt0p1fZQoaAZoCWgPQwgkDAOWnHZwQJSGlFKUaBVLv2gWR0DM2ILftQbddX2UKGgGaAloD0MIZRh3g2hxcECUhpRSlGgVS7xoFkdAzNiM287IUHV9lChoBmgJaA9DCO87hsf+PnBAlIaUUpRoFUvJaBZHQMzYq1O9FnZ1fZQoaAZoCWgPQwgrTrUWpoxxQJSGlFKUaBVLwmgWR0DM2LBx//eddX2UKGgGaAloD0MIOUVHcvmzTUCUhpRSlGgVS7FoFkdAzNiy8wpOOHV9lChoBmgJaA9DCLGGi9yTKHFAlIaUUpRoFUvVaBZHQMzYsiYsunN1fZQoaAZoCWgPQwim8naE0xlSQJSGlFKUaBVLqmgWR0DM2LsdaMaTdX2UKGgGaAloD0MIXyaKkLrfcUCUhpRSlGgVS8NoFkdAzNjFS88La3V9lChoBmgJaA9DCLWLaaZ7iXFAlIaUUpRoFUvJaBZHQMzY/mY8dPt1fZQoaAZoCWgPQwiPcFrwosVHQJSGlFKUaBVLvmgWR0DM2QY8QqZudX2UKGgGaAloD0MIjZYDPdSwcUCUhpRSlGgVS8xoFkdAzNkMnUDuB3V9lChoBmgJaA9DCGg+525XRG9AlIaUUpRoFUvXaBZHQMzZGIzeoDR1fZQoaAZoCWgPQwhTXcDLzCxzQJSGlFKUaBVL3mgWR0DM2R6FM7EHdX2UKGgGaAloD0MIsyWrIlxGckCUhpRSlGgVTSYBaBZHQMzZN4Otnwp1fZQoaAZoCWgPQwippbkVQqdzQJSGlFKUaBVL7WgWR0DM2TwS8J2MdX2UKGgGaAloD0MIuarsu+K7cUCUhpRSlGgVS9loFkdAzNlAiM5wO3V9lChoBmgJaA9DCDkqN1GLLHNAlIaUUpRoFUv4aBZHQMzZP+RYA811fZQoaAZoCWgPQwhOK4VArj1yQJSGlFKUaBVLxmgWR0DM2Vuv8qFzdX2UKGgGaAloD0MIHOviNlpEcECUhpRSlGgVS8hoFkdAzNlk0UoKD3V9lChoBmgJaA9DCCcUIuAQNXBAlIaUUpRoFUv4aBZHQMzZZ5M10kp1fZQoaAZoCWgPQwgWw9UBELJwQJSGlFKUaBVL0GgWR0DM2Wl/6O5sdX2UKGgGaAloD0MIUDi7tYwIckCUhpRSlGgVS9NoFkdAzNlteqJdjXV9lChoBmgJaA9DCMr+eRow8XBAlIaUUpRoFUvsaBZHQMzZi4kNWlx1fZQoaAZoCWgPQwh7EW3HFPZyQJSGlFKUaBVL/GgWR0DM2aS+lCTmdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 375, "n_steps": 1024, "gamma": 0.9926113180251599, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 5, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.7.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.12.1+cu113", "GPU Enabled": "False", "Numpy": "1.21.6", "Gym": "0.21.0"}}