ppo-LunarLander-v2 / config.json
tayden's picture
Upload PPO LunarLander-v2 trained agent
09f55a8 verified
raw
history blame
13.7 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ae4518d75b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ae4518d7640>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ae4518d76d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ae4518d7760>", "_build": "<function ActorCriticPolicy._build at 0x7ae4518d77f0>", "forward": "<function ActorCriticPolicy.forward at 0x7ae4518d7880>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ae4518d7910>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ae4518d79a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7ae4518d7a30>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ae4518d7ac0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ae4518d7b50>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ae4518d7be0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ae4518823c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1729282975052274661, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGa/ZD3D+XG6+0OXOK9wFDPPE+m51QSutwAAgD8AAIA/M5cFvRRWjbpJ8qa6057Ctds/+TqORcE5AACAPwAAgD+a1UM9j7I8unFTP7vk9lw2yTq+u9AVXToAAIA/AACAP02aWr2P9mS6UfWsuU7DIrau/1y526jLOAAAgD8AAIA/M6GVPPawAboa7UE4/vdQM8XqojvC5mi3AACAPwAAgD/gahG+EKyXPqlZCD5VZ4W+F4kCPEqlBLoAAAAAAAAAAM2c3zrudJW8OtgNu+yRBj2Ec6C9hoyyvQAAgD8AAIA/gJ6xPSngTrqUGoU7wIEvty71orrC85q6AAAAAAAAgD+zuge9e8qQur64jTmVLJQ0QZffOXHoo7gAAIA/AACAP02sgT1cQzK6owaUtuYocjFDb5G7asqtNQAAgD8AAIA/mk3QvK7Nl7oJQUS2XOgwsaJm3DkqmGQ1AACAPwAAgD+AEU69H9X6ubl/nDX3se8wjbrtOoq1q7QAAIA/AACAP2b9rTwUjJ+6tEetNuAe1jHOR+I6/4LHtQAAgD8AAIA/eoqjPkJ2gT/Dnxq9+XG2vp6jQT7VAlG+AAAAAAAAAAAzNlc9KTBoukoqLTu/aKI3PB7NuoNr9bkAAIA/AACAP9oqoD1cU0m60kGRucQoG7W3IEw77+KnOAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGLsIvJzT4OMAWyUTegDjAF0lEdAlEQekgwGnnV9lChoBkdAYsFhfBvaUWgHTegDaAhHQJRFEEvCdjJ1fZQoaAZHQF8nTmW+oLpoB03oA2gIR0CURTyC4BmxdX2UKGgGR0BjK3yRSxZ/aAdN6ANoCEdAlEr5+pfhM3V9lChoBkdAYZ0rPt2LYWgHTegDaAhHQJRNECQtBfN1fZQoaAZHQF+mK9PDYRNoB03oA2gIR0CUUDGG21D0dX2UKGgGR0BjVzlq8DjjaAdN6ANoCEdAlFSfjXFtK3V9lChoBkdAY893cHnln2gHTegDaAhHQJRbBmjCYTl1fZQoaAZHQGEAJfYzzmRoB03oA2gIR0CUYCFspG4JdX2UKGgGR0BjYAQcxTKlaAdN6ANoCEdAlGY7t/nW8XV9lChoBkdAZaWmMwUQCmgHTegDaAhHQJRpwp5NXYF1fZQoaAZHQGdOJ8OTaCdoB03oA2gIR0CUf+BE8aGYdX2UKGgGR0BlFqz/p+tsaAdN6ANoCEdAlIgpXIU8FXV9lChoBkdAPdYigTRIBmgHS+loCEdAlIh9YfW+XnV9lChoBkdAZg91r6+FlGgHTegDaAhHQJSIjAuZkTZ1fZQoaAZHQGGHMSTQmeFoB03oA2gIR0CUjnWN3np0dX2UKGgGR0Bihy57PY4AaAdN6ANoCEdAlI+lVghKUXV9lChoBkdATLrYdyT6i2gHS/loCEdAlJgURnOB2HV9lChoBkdAY2qRs/IKdGgHTegDaAhHQJSaPV4HHFR1fZQoaAZHQGGzlsxfv4NoB03oA2gIR0CUm4+N96TodX2UKGgGR0BhRhJyyUs4aAdN6ANoCEdAlJvHwTdtVXV9lChoBkdAW6u/xlQMyGgHTegDaAhHQJSiKwt8NQV1fZQoaAZHQGNLp7sv7FdoB03oA2gIR0CUo+kVvddndX2UKGgGR0Bkz9BD5TIeaAdN6ANoCEdAlKaDTz/ZNHV9lChoBkdAQt9Up/gBLmgHS/9oCEdAlKozRx95QnV9lChoBkdAYECUAT7EYWgHTegDaAhHQJSqZENOM2p1fZQoaAZHQGW0a4tpVS5oB03oA2gIR0CUsFqSowVTdX2UKGgGR0BiyT7ALy+YaAdN6ANoCEdAlLULHlwLmnV9lChoBkdAYPyv3ai9I2gHTegDaAhHQJS7Z5LRKHx1fZQoaAZHQGP/Dl5nlGRoB03oA2gIR0CU010pVjqfdX2UKGgGR0BfffCqIacaaAdN6ANoCEdAlNugCbMHKXV9lChoBkdAYe1VuJk5ImgHTegDaAhHQJTcAB0ZFXt1fZQoaAZHQGCwtJ4B3idoB03oA2gIR0CU4YNxEORUdX2UKGgGR0Bm3N1bJOnEaAdN6ANoCEdAlOKn5aePJnV9lChoBkdAYlnPOY6XB2gHTegDaAhHQJTpNbGFSKp1fZQoaAZHQGUhc/+sHSpoB03oA2gIR0CU61DRMN+cdX2UKGgGR0Bj3rIV/MGHaAdN6ANoCEdAlOt1gx8D0XV9lChoBkdAZJJitJWeYmgHTegDaAhHQJTwIVoHs1N1fZQoaAZHQFyMcdYGMXJoB03oA2gIR0CU8bHlOoHcdX2UKGgGR0BlGHTG5tm+aAdN6ANoCEdAlPPwhr30w3V9lChoBkdAZ6FK4hEBsGgHTegDaAhHQJT3MnH/9511fZQoaAZHQGWiul41P31oB03oA2gIR0CU91lqJuVHdX2UKGgGR0Bni/531SOzaAdN6ANoCEdAlPxYyfthNXV9lChoBkdAZYMDPnjhk2gHTegDaAhHQJUBkNx2jfx1fZQoaAZHQGDO4JVsDW9oB03oA2gIR0CVCcdpZfUndX2UKGgGR0Bi/nECNjslaAdN6ANoCEdAlQ2DsyBTXXV9lChoBkfAEVGCZnctXmgHS+toCEdAlSLoXTEzf3V9lChoBkdAYsfQxesxPGgHTegDaAhHQJUmEyTINmV1fZQoaAZHQGT+gzP8hs9oB03oA2gIR0CVJmqCpWFOdX2UKGgGR0BkcwarFOwgaAdN6ANoCEdAlSuUOqebu3V9lChoBkdAZIxBsyi22GgHTegDaAhHQJUsu59Vmz11fZQoaAZHQGPs5n+Q2ddoB03oA2gIR0CVNDOhkAggdX2UKGgGR0Bj2sJY1YQraAdN6ANoCEdAlTb/h2nsLXV9lChoBkdAYX/65Xlr/WgHTegDaAhHQJU3M3cYZVJ1fZQoaAZHQGhKQiRnvlVoB03oA2gIR0CVPZ5UtI07dX2UKGgGR0BjYqz7di2EaAdN6ANoCEdAlT9Nv4ubqnV9lChoBkdAY/rcJtzjm2gHTegDaAhHQJVBiwiaAnV1fZQoaAZHQGJuaFuejEhoB03oA2gIR0CVRL3mmtQsdX2UKGgGR0Bigf1BdD6WaAdN6ANoCEdAlUTkgW8AaXV9lChoBkdAZdK1+iJwbWgHTegDaAhHQJVJ26lLvkR1fZQoaAZHQGM01YyO7xxoB03oA2gIR0CVU6oScslLdX2UKGgGR0Bll5zkp7TlaAdN6ANoCEdAlVd6KxcE/3V9lChoBkdAZAioNNJvpGgHTegDaAhHQJVvT0Cih391fZQoaAZHQGWhiM5wOvtoB03oA2gIR0CVcstj0+TvdX2UKGgGR0BiNmhK15SnaAdN6ANoCEdAlXMfTgEU03V9lChoBkdAZjkzqrzXjGgHTegDaAhHQJV4gN9YwIt1fZQoaAZHQGGjiiAUcn5oB03oA2gIR0CVebc5sCT2dX2UKGgGR0BFI/m9xp+MaAdL8mgIR0CVfMI0qH45dX2UKGgGR0Bw0fGsFMZhaAdN0QJoCEdAlX0DhUBGQXV9lChoBkdAYuBz+WGATmgHTegDaAhHQJWBX9uP3i91fZQoaAZHQGDAMkhRqGloB03oA2gIR0CVhDnLq2SddX2UKGgGR0BmO81Gb1AaaAdN6ANoCEdAlYRvUBnzx3V9lChoBkdAbtVi4rjHXGgHTfwCaAhHQJWEga5wwTN1fZQoaAZHQGKXh/iHZbpoB03oA2gIR0CVidUF0PpZdX2UKGgGR0BjexL9MsYmaAdN6ANoCEdAlYtG/8EV33V9lChoBkdAZeLSaVlf7mgHTegDaAhHQJWQ6J66asp1fZQoaAZHQEMwgIyCWeJoB0vhaAhHQJWVZMsYl6Z1fZQoaAZHQGKBGtITXatoB03oA2gIR0CVlo79AHE/dX2UKGgGR0BwiaZF5OafaAdNcgNoCEdAlZpZGrjo6nV9lChoBkdAYdxMt9QXRGgHTegDaAhHQJWns7kn1Fp1fZQoaAZHQGdD94u9OARoB03oA2gIR0CVwRwY+B6KdX2UKGgGR0BiqUnAqNIcaAdN6ANoCEdAlcGAnDziCXV9lChoBkdAY9Vgw482aWgHTegDaAhHQJXIAtTUAkt1fZQoaAZHQHAB4lY2bXpoB02eA2gIR0CVyGWyTpxFdX2UKGgGR0BlPKMxXXAeaAdN6ANoCEdAlclZaA4GU3V9lChoBkdAZHvm1YyO72gHTegDaAhHQJXN2vX9R791fZQoaAZHQDO6DOC5EtxoB0vvaAhHQJXR6Ogg5ip1fZQoaAZHQGCqaef7JnxoB03oA2gIR0CV0pn+Q2dedX2UKGgGR0BttPHR1HOKaAdN8wJoCEdAldVk4Nqgy3V9lChoBkdAZRtZ8rqdH2gHTegDaAhHQJXVi7NB4Ux1fZQoaAZHQGP/FHrhR65oB03oA2gIR0CV1bxQzk6tdX2UKGgGR0BmBsB6rvLHaAdN6ANoCEdAldXLftQbdnV9lChoBkdAYR5S+g13uGgHTegDaAhHQJXbRSeiBXl1fZQoaAZHQCN8BGQSzxBoB0vraAhHQJXd7Ub1h9d1fZQoaAZHQGCLzeoDPnloB03oA2gIR0CV5PzsyBTXdX2UKGgGR0BiNjf+CK77aAdN6ANoCEdAleYYcFQl8nV9lChoBkdAcl0aiKziTGgHTXcBaAhHQJXnqVu76Hl1fZQoaAZHQGRi/8MuvlloB03oA2gIR0CV6NmygPEsdX2UKGgGR0BwzDQ6ZH/caAdNagFoCEdAle2WLUCq63V9lChoBkdAZI/UWl/H52gHTegDaAhHQJXyDORkmQd1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.4.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}